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As we train multiple generations of students to narrowly design clever, carefully controlled experiments in our confined lab spaces,
we may fail to notice, as a field, that we have overlooked fundamental aspects of human cognition. This is a first-person account of
how our research and understanding of the neural code were forever transformed when we decided to open the lab’s door to the
natural world. This journey started with the decision to shift from controlled stimuli to natural dynamic and “messy” stimuli.
This transition enabled us to focus on how information is accumulated and processed over time. As a result, we have discovered
a new topographic mapping of the hierarchy of cortical processing timescales. I will conclude with a general observation of the
paradigm shift occurring in the field as it increasingly emphasizes the study of the neural processes that underlie human behavior
in natural, everyday contexts. I am excited to share this journey with you.

“The present contains nothing more than the past, and
what is found in the effect was already in the cause,”
Henri Bergson, Creative Evolution.

The Shift from the Lab to the Natural World
My journey started in 1999 when I trained as a PhD student in
Rafi Malach’s lab at the Weizmann Institute. Rafi’s lab was
vibrant and creative. These were the early days of the cognitive
neuroscience revolution, and the new imaging tools let us
map the previously unknown landscape of high-level visual
processing areas (Levy et al., 2001; Hasson et al., 2002). Nancy
Kanwisher had just discovered the fusiform face area
(Kanwisher et al., 1997) and the parahippocampal place area
(Epstein et al., 1999). However, as our research progressed and
more andmore of our papers were accepted, I became increasingly
concerned about the ecological validity of our findings.

In each of our studies, we were zealous about controlling as
many variables as possible while carefully manipulating our
dimensions of interest. For example, we minimized the effect of
eye movements by having our subjects fixate on a small red point.
By normalizing the images, we controlled for luminance- and
contrast-induced variations in neural activity. We removed the
impact of colors by applying grayscale filtering. We often
resorted to using line drawings to remove the effect of texture.

We presented isolated objects and faces cropped on a gray
background to remove the effect of spatial context. Finally, we
continually presented the objects and faces, one at a time, using
event-related designs that removed temporal dynamics and
memory-induced interactions across images. We hoped back
then, and perhaps we still hope to this day, that gradually, by
manipulating a few variables at a time, using an incremental
divide-and-conquer strategy, we could collectively, one day,
aggregate all of these piecemeal studies into a coherent and
rich neurocomputational model of the human brain. But what
if the brain responds in entirely different, even opposing, ways
in the natural world, where myriad variables interact in time in
complex and nonlinear ways?

Ecological Validity and the Replications Crisis
Ecological validity poses significant challenges in our field,
exacerbating and compounding the replication crisis (Pashler
and Harris, 2012; Shamay-Tsoory and Mendelsohn, 2019).
To replicate a study, we are asked to carefully follow all the steps
and recipes implemented in the original studies. Any tiny
deviation from the original setupmay be used to explain our failure
to replicate a study. However, themore significant issue here is that
the request to replicate a study verbatim fails to address the issue of
ecological validity. Even upon replication, what is the significance
of an effect so frail as to onlymaterialize in a confined and artificial
set of parameters (not representing the real world)?

Robustness and generalization across natural contexts provide
a new framework for assessing the ecological validity of our
findings. In real life, we do not have the luxury of eliminating
confounds. Instead, the brain’s task is to detect, select, and
amplify the relevant dimensions as a function of context while
all parameters naturally vary. Therefore, a system designed for
real-life object recognition should handle ever-changing
brightness, contrast, color, and context fluctuations. For example,
one tool the visual system uses to filter variability is eye
movements, which help scan, attend to, and process regions of
interest in the natural scenes. Therefore, instead of removing or
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fixing dimensions, our experimental goal should be to show that
our findings hold across all these contexts.

In the early 2000s, we were still uncertain whether the FFA
and PPAwould maintain functional selectivity as subjects viewed
dynamic natural images freely. As a result, I decided to extend
my PhD for a year to undertake a final project to test the selectiv-
ity of the cortical (including visual) systems during the process-
ing of complex audio-visual movies. This decision changed my
career forever.

Stepping Out into the Natural World and
Uncovering Intersubject Correlation
At that time, the idea of imaging the brain as it processes real-life
situations was unheard of. Since we were all trained to control
every aspect of our studies, it was challenging for us to relinquish
control. We spent days arguing about allowing subjects to watch a
movie freely, concerned about the lack of control over eye move-
ments. Similarly, we debatedwhether to include ormute the sound-
track, as we were concerned that the interaction between different
sensory modalities would complicate the analyses and interpreta-
tions. We also discussed the dialogues, plot, and the potential for
the brain to adapt to recurring elements as the movie unfolded.
Ultimately, we decided to take the risks and scan people as they
freely watched a 30 min audiovisual segment of The Good, the
Bad and the Ugly by Sergio Leone (Hasson et al., 2004).

Furthermore, back then most fMRI studies relied on general
linear models and event-related designs, considered cutting-edge
analyses. However, these methods were unsuitable for analyzing
the continuous movie-watching dataset. Thus, we needed to
develop new ways to analyze our data.

As we relinquished control, we anticipated that each individ-
ual would have idiosyncratic ways of viewing and interpreting the
movie, resulting in significant uncontrolled and unaccounted
variations in neural activity among individuals. However, to my
surprise, as I sampled voxels from all subjects across the visual
system, including V1, V2, V4, LO, FFA, and PPA, a very different
pattern started to emerge. The response patterns in each of these
visual regions were highly selective and distinct from the
responses in other visual areas. Within each area, however, the
responses across subjects were highly similar (correlated), indi-
cating that variability across subjects was low (and not high as a
priori expected) as they watched the movie. Excited about these
results, I rushed into Rafi’s office. We decided to run a compre-
hensive whole-brain analysis in search of all voxels that
responded similarly across subjects as they watched the movie.
To do so, we measured the correlation of time courses across all
subjects in each voxel across the entire cortex, which we later
named intersubject correlation (ISC, Nastase et al., 2019).

The ISC measures the reliability of activity over time
across subjects rather than measuring the average activity level
as tested by event-related analysis (Hasson et al., 2010). To our
astonishment, the selective alignment across subjects was
widespread (Hasson et al., 2004). We thus observed selective
yet shared correlated activity across subjects in visual areas, audi-
tory areas along the superior temporal gyrus, language areas
including Wernicke’s and Broca’s areas, and many high-level
parietal and frontal areas associated with the default mode
network (DMN).

Functional Selectivity in the Natural World
We were curious about what drove the selective yet shared activ-
ity across subjects in each brain region as they watched the

movie. We wondered if our results aligned with the expected pat-
terns of selectivity observed in previous controlled lab-based
experiments or if we had uncovered new organizational patterns.
Our investigation showed evidence of both. Most importantly,
we discovered a new topographical mapping of processing time-
scale that had yet to be identified.

To our relief, the FFA, PPA, and LO retained their known spa-
tial selectivity to faces, places, and objects, respectively, as pre-
dicted by the more controlled experiments (Kanwisher, 2010).
Our naturalistic approach showed that the functional selectivity
of high-order visual areas was robust to variations in contrast,
luminance, perspective, and motion. Moreover, when a scene is
composed of multiple objects—for example, when Clint
Eastwood rides a horse around a deserted town while carrying
a gun in search of the bad guys—we found that the selectivity
was determined by attention and eye movements. Recall our
extensive discussions about the risk of losing control over sub-
jects’ gaze as we contemplated removing the fixation. In hind-
sight, in taking the risk, we made a wise decision, as the film
effectively guided all our subjects’ gazes, naturally directing
them to focus on the same parts of the scene. Using this complex
natural stimulus and allowing for spontaneous behavior, we
uncovered the shared alignment in eye movements and the
parallel and synchronous enhancement in neural selectivity while
disparate individuals watched the movie.

After our initial study with The Good, the Bad and the Ugly,
we expanded our research to test the generalizability (i.e., ecolog-
ical validity) of our findings using a variety of natural stimuli. We
found that a strong correlation among subjects can also occur in
everyday situations despite not resembling carefully crafted
Hollywood films with multimillion-dollar budgets. For instance,
sharing personal accounts during storytelling events could
induce high ISCs in language and high-order areas across listen-
ers (Nastase et al., 2021). Additionally, we found that high ISCs
can emerge when ordinary people recall their daily memories
(Chen et al., 2017) and engage in everyday conversations
(Goldstein et al., 2025) and that these effects are modulated in
people with certain neuropsychiatric disorders (Kronberg et al.,
2024). Finally, we discovered a coupling between the brain
responses of a speaker and a listener as they engaged in natural
conversations (Stephens et al., 2010; Silbert et al., 2014). As a
result, we determined that alignment across subjects captures
shared neural signals associated with how social groups process
and share information (Hasson et al., 2012; Zada et al., 2024).

Temporal Context Constantly Shapes Our Minds
Over Time
As we delved into the complexity andmultidimensional nature of
our movie and storytelling stimuli and the corresponding neural
activity, we soon realized that transitioning to natural contexts
raises new questions that are easy to overlook in lab settings. In
a typical event-related design, researchers present isolated
context-less stimuli, one at a time, for a brief duration. For exam-
ple, in many of our studies, we presented isolated images of faces,
objects, and houses, one at a time, for 500 milliseconds each
(Hasson et al., 2001; Malach et al., 2002). Then, we calculated
the average neural response for images of a particular category
(e.g., faces) compared with the average neural activity for the
other categories of stimuli. Any variability in the neural
responses among stimuli within the same category was generally
considered a nuisance to average out and minimize; time was
not modeled.
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However, the neural variability over time among stimuli is
essential rather than a nuisance, as it captures the contextual
aspect of natural stimuli. To illustrate, a 30 min movie com-
prises ∼43,200 unique images projected at 24 frames per second.
These images are meticulously edited and fused with a sound-
track of environmental sounds, dialogues, and music designed
to tell a cohesive story. In such rich contexts, the meaning of
any frame or sound bite at a specific time in the movie can be
shaped by complex, nonlinear interactions with all preceding
and subsequent audiovisual stimuli. Similarly, in a spoken story,
each word derives its full meaning from the subtle contextual
interactions with all other words in the narrative. Such dynamic,
ever-changing, temporal interactions, the core of natural stimuli,
are deliberately removed from traditional event-related experi-
ments conducted in a lab setting.

Trigger-averaging analyses cannot capture the context-
dependent richness imbued in natural dynamic stimuli (Ben
Yaakov et al., 2012). For example, averaging images with a
close-up of faces in a movie removes any neural signal associated
with our ability to recognize different faces in natural contexts
robustly. After all, the neural response to Clint Eastwood (the
“good guy”) should not be washed out by averaging it with the
neural response to Eli Wallach (the “ugly guy”). Furthermore,
subtle nested temporal dependencies would be lost if one is to
characterize the “typical” neural response, even for a single face
in a movie or a single word in a narrative. In each scene, Clint
Eastwood’s face conveys a subtly different expression that the
brain picks up. Averaging all close-ups of Clint’s face will wash
away such signals. Similarly, each word can change meaning in
each scene based on context. Take the word “cold,” for instance:
the phrase “you are cold as ice” could refer to your body temper-
ature or your perceived personality trait, depending on the
broader temporal context of the conversation. Thus, averaging
all occurrences of a word or a word category (such as nouns ver-
sus verbs) will likely eliminate subtle context-dependent interac-
tions. These context-dependent interactions compelled us to
rethink how the brain processes and integrates dynamic, context-
sensitive information across multiple timescales.

The Processing Timescale Hierarchy
During my postdoctoral research at NYU, I collaborated with
Professors Nava Rubin and David Heeger to explore how past
events shape the processing of incoming information across
the cortical hierarchy. Our approach involved manipulating the
temporal structure of movies and audiobooks at various tempo-
ral granularities without oversimplifying or reducing the dimen-
sionality of the stimuli or compromising the ecological validity of
our research studies.

Similar to spatial receptive fields, which enable neurons and
visual areas to integrate information across space, we posited
that neurons and brain regions possess temporal integration win-
dows that allow them to integrate information over time. To
characterize the processing time scale for each cortical area, we
measured how traces of prior events (recent memory) influenced
moment-to-moment neural activity (online processes) during
minutes-long real-life stimuli. To do so, we manipulated the tem-
poral structure of movies across multiple timescales. We began
by dividing each stimulus into smaller temporal units, segment-
ing each movie into individual frames, short clips of a few sec-
onds between cuts, and 30–40 s continuous plot fragments
(Hasson et al., 2008). In a follow-up experiment at Princeton,
where I started my lab, we applied a similar approach to a spoken
story. We segmented the story into individual sound bites and

broke it down further into words, sentences, and paragraphs
(Lerner et al., 2011). Next, the temporal structure of the stimulus
was varied by scrambling the order of the units at each temporal
granularity while maintaining it within each time unit. We also
played the movies and audiobooks in reverse order to measure
neural activity at the single keyframe (shorter timescale) level.
In the backward condition, the past context in the forward intact
condition became the future context while maintaining the tem-
poral integrity of each keyframe.

Like the known spatial receptive field topography, the tempo-
ral integration window increases from early sensory areas, which
have a millisecond integration window, to high-order areas,
which have a minutes-long integration window. For example, a
clear pattern was observed in the visual areas as we moved along
the cortical hierarchy. In early visual areas, the temporal integra-
tion windows were only a few milliseconds long. In contrast,
higher-order visual areas had integration windows lasting several
seconds, while high-level processing regions in the frontal and
parietal cortices had integration windows extending to tens of
seconds (Hasson et al., 2008). A similar hierarchical pattern
was noted in the auditory, language, and high-order areas
when we scrambled the audiobooks (Fig. 1A; Lerner et al., 2011).

The Struggle to Publish rather than Perish
It was challenging to publish our first paper on the hierarchy of
processing timescales along the visual system. While many
prominent researchers were excited about exploring neural
dynamics during natural-world processing, others heavily criti-
cized the work. The idea of relinquishing control and using var-
ied multidimensional stimuli contradicted some core beliefs
about how to conduct rigorous research. I remember David
remarking that our work was causing division in the field and
that he had never seen such emotionally charged reviews before.
After more than 10 rounds of revisions, during which we incor-
porated additional control experiments and analyses to support
our findings, I almost gave up. I worried that my career might
hit a dead-end. Fortunately, the editors at JNeurosci stepped in
and were willing to bring in new reviewers to re-evaluate the pre-
vious reviews and guide the process until the paper was published
(Hasson et al., 2008). To our relief, the JNeurosci readily accepted
the second paper, which describes the temporal integration win-
dow along the auditory-to-language hierarchy (Fig. 1A; Lerner
et al., 2011).

Characterization of the Cortical Processing
Hierarchy
Over the years, my lab at Princeton has further characterized the
cortical processing hierarchy with the help of my exceptionally
talented students and postdocs. We examined how information
flows along the processing timescale hierarchy during natural
communication (Chang et al., 2022; Goldstein et al., in press),
music perception (Farbood et al., 2015; Piazza et al., 2021), and
narrative comprehension (Yeshurun et al., 2017). Honey et al.
(2012) reported a timescale hierarchy using intracranial record-
ings (Fig. 1B) and showed how the persistence of neural dynam-
ics (Chang et al., 2021) could be measured using autocorrelation
and spectral methods (Honey et al., 2012; Stephens et al., 2013).
Additionally, we investigated the interactions between high-level
cortical areas with minute-long temporal integration windows
and the hippocampus (Chen et al., 2015; Zuo et al., 2020). We
also explored the role of attention in modulating these processes
(Regev et al., 2019). Lastly, we studied how information is
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Figure 1. Hierarchical of temporal processing timescales. A, fMRI map of the gradual transition from short to long temporal integration windows along the temporal–parietal axis mapped using audio
narratives. The color of each voxel indicates the shortest timescale of coherence in the stimulus that produced a reliable intersubject response (red, story played backward; yellow, story with word-order
scrambled; green, story with sentence-order scrambled; blue, story with paragraph-order scrambled). fMRI time courses in early auditory areas (A1+) were reliable across subjects exposed to the same
stimulus; this was true at all scrambling levels, from the intact full story (FS) to scrambled paragraphs (P), scrambled sentences (S), scrambled words (W), and backward speech (B). Further up the processing
hierarchy, more and more stimulus history affected responses in the present moment. At the top of the hierarchy, areas such as the temporal parietal junction (TPJ) responded reliably only at the full story and
paragraph levels. B, Electrocorticography (ECoG) map of the gradual transition from short to long temporal integration windows mapped using an audiovisual movie. Shorter integration windows were
predominantly found near primary sensory areas, while longer integration windowswere found further away from sensory areas. Early auditory areas (A1+) responded reliably across all scrambling levels, from
the intact full movie (FWD) to the coarse scrambledmovie (CRS) and the scrambledmovie (FIN). Further up the processing hierarchy, more andmore stimulus history affected responses in the presentmoment.
At the top of the hierarchy, areas such as the lateral prefrontal cortex responded with much greater reliability at the intact and coarse scrambled movie levels. Figure adapted from Hasson et al. (2015).
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organized into events and scaled along the processing hierarchy
(Lerner et al., 2014; Baldassano et al., 2017).

This discovery of the processing timescale topography opened
a new line of research. Many labs further explored the processing
timescale hierarchy using numerous techniques, including fMRI,
EcOG, EEG, and single-unit measurements. The processing
hierarchy was also replicated across species, from humans to pri-
mates (Chaudhuri et al., 2015) to rodents (Rudelt et al., 2024).
Murray et al. (2014) revealed a timescale hierarchy even in single-
neuron recordings. The notion of a timescale hierarchy was
integrated into the broader mapping in the primate cerebral cor-
tex: the gradient from external to internal cortical networks
(Margulies et al., 2016); gradients of gene expression, myelina-
tion, and cortical thickness (Burt et al., 2018; Shafiei et al.,
2020); as well as gradients of brain network connectedness
(Baria et al., 2013).

Moreover, the timescale gradient was extended to a whole
brain perspective, including subcortical circuits (Raut et al.,
2020). It was also reported to persist across task states in behav-
ing monkeys (Manea et al., 2024) and humans (Wolff et al., 2022)
and became essential in many theories of learning (Bernacchia
et al., 2011; Soltani et al., 2021). Going forward, an important
question is whether the timescale hierarchy is an inherent
property of brain circuits—essentially a genetically encoded

foundation that shapes and influences learning—or if it emerges
from the process of learning the multi-scale statistics of the nat-
ural world (Hasson et al., 2020). Several studies have investigated
the effectiveness of using a timescale hierarchy for sequence
learning models (Chung et al., 2016) and encoding models of
neural dynamics (Vo et al., 2023).

Processing Timescale and Memory Systems
The temporal integration window measures how past events
impact the processing of incoming information in each cortical
region. For the past to affect the processing of incoming informa-
tion, a form of memory trace must linger and shape the process-
ing at each level of the temporal processing hierarchy. However,
we were perplexed about how to connect the concept of the tem-
poral integration window with established memory constructs. Is
a temporal integration window associated with short-term mem-
ory, working memory, or long-termmemory? This question puz-
zled my postdoc, Christopher Honey, and me for weeks. It is
difficult to reconcile the idea that each brain area can accumulate
information over a given temporal window with the notion that
we possess distinct memory systems—separate from processing
systems—that store information over short and long timescales.
After many weeks of internal discussions, we finally realized that
the idea of a temporal integration window compels us to unite the

Figure 2. A, A hierarchy of process memory framework. Memory is integral to the operation of each cortical area, and there is no separation between the processing and information storage units.
Furthermore, each region’s processing timescale (operationalized by measuring the temporal integration window) increases in a topographically organized manner, from milliseconds in early sensory
areas to minutes in high-order areas. B, A schematic process memory hierarchy for auditory and visual stimulation (for actual data, Fig. 1). C, Primary versus modulatory process memory. Two additional
processes (blue circles) modulate the primary process memories hierarchy (red circles): attentional control and episodic memory processes. Figure adapted from Hasson et al. (2015).
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concepts of working memory, long-term memory, and neural
processing into one cohesive framework rather than dissociate
them. In essence, the processing timescale views memory as a
fundamental part of any information processing circuit. After
all, each neuron functions as both a processing unit, dynamically
synthesizing information from its dendrites, and a memory unit,
capable of modifying its synaptic connections with other neu-
rons. Similarly, each neural circuit accumulates (memorizes)
and synthesizes (processes) information over its preferred time-
scale. Thus, temporal respective windows integrate the accumu-
lation of memories over time together with online information
processing in a unified process-memory framework (Hasson
et al., 2015).

Specifically, while all cortical circuits have the process-
memory capacity to store information over time, the temporal
integration window increases hierarchically from early sensory
areas to higher-order perceptual and cognitive regions (Fig. 2).
Early sensory areas have a short temporal integration window
(tens of milliseconds), which allows them to integrate sensory
information (e.g., a few phonemes to recognize a word).
Mid-level regions (such as language areas) have a medium mem-
ory integration window (several seconds), enabling the integra-
tion of information into longer sequences (e.g., integrating
words while analyzing a sentence). At the top of the processing
hierarchy, the DMN areas have a long memory integration win-
dow (seconds to minutes) required to integrate information
(e.g., sentences) over long episodes (e.g., as we engage in long
conversations, audiobooks, or movies). Finally, the DMN has
strong connections with the medial temporal lobe and hippo-
campus, allowing it to increase the contextual window by adding
episodic information accumulated over minutes, days, and even
years (Chen et al., 2016; Yeshurun et al., 2021).

The recent success of artificial neural networks in processing
natural stimuli, such as visual, auditory, and language stimuli,
sheds additional light on our process-memory hypothesis. Like
biological neural networks, artificial neural networks dismiss
the classical notion of segregation between processing units
and memory units. Specifically, in artificial neural networks,
each neuron functions as a processing unit and a memory unit
that can update its connectivity weights. Furthermore, instead
of using a short-term memory cache, as in Von Neumann’s digi-
tal computers, artificial neural networks can use recurrent activ-
ity or attention heads to retain contextual information from
previous events. Finally, we showed that neural activity in cortical
areas at the top of the processing hierarchy can be modulated by
information gathered over a very long period: by augmenting
large language models with additional episodic storage, such as
memory-augmented large language models, relevant prior con-
texts (encoded and retrieved over days to years) change process-
ing of a given event (Wang et al., 2023). The recent success in
building deep models that can process the natural world offers
a new computational framework for understanding the neural
code that underlies the processing of the natural world in the
human brain (Tikochinski et al., 2025).

Concluding Remarks
Using natural stimuli, we initially set out to test the ecological
validity and reliability of our laboratory-based findings and
theories in real-life situations. However, we soon realized that
controlled experiments cannot accurately capture the brain’s
neural dynamics when processing real-world experiences. We
conclude our journey by considering ecological validity as a fun-
damental guiding principle for developing cognitive theories

and testing and interpreting our hypotheses. Findings that can
only be replicated under narrow, artificial, and highly controlled
conditions, which do not materialize in the real world, may
lack significance and relevance to everyday cognition, and should
be questioned. When we started using movies and audiobooks
in our studies, the use of natural stimuli to explore the neural
basis of everyday cognitive processes was at its inception. Over
the years, we have observed how natural stimuli have led to a
paradigm shift in how we theorize and conduct our experiments
in neuroscience. Finally, with the recent advancements in
deep generative models that can process natural stimuli and
interact with the real world without simplifying or controlling
any input aspect, natural neuroscience is on the brink of a
second paradigm shift. This shift is triggering a new set of
model-based studies that may lead us to develop better theories
and computational models for understanding how the human
brain develops and operates in the real world (Hasson et al.,
2020; Nastase et al., 2020).
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