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Shared functional specialization in
transformer-based language models and the
human brain

Sreejan Kumar 1,6 , Theodore R. Sumers 2,6 , Takateru Yamakoshi 3,
Ariel Goldstein4, Uri Hasson 1,5, Kenneth A. Norman 1,5,
Thomas L. Griffiths 2,5, Robert D. Hawkins1,5 & Samuel A. Nastase 1

When processing language, the brain is thought to deploy specialized com-
putations to construct meaning from complex linguistic structures. Recently,
artificial neural networks based on the Transformer architecture have revo-
lutionized the field of natural language processing. Transformers integrate
contextual information across words via structured circuit computations.
Prior work has focused on the internal representations (“embeddings”) gen-
erated by these circuits. In this paper, we instead analyze the circuit compu-
tations directly: we deconstruct these computations into the functionally-
specialized “transformations” that integrate contextual information across
words. Using functional MRI data acquired while participants listened to nat-
uralistic stories, we first verify that the transformations account for con-
siderable variance in brain activity across the cortical language network.
We then demonstrate that the emergent computations performed by indivi-
dual, functionally-specialized “attention heads” differentially predict brain
activity in specific cortical regions. These heads fall along gradients corre-
sponding to different layers and context lengths in a low-dimensional cor-
tical space.

Language comprehension is a fundamentally constructive process.We
resolve local dependencies among words to assemble lower-level lin-
guistic units into higher-level units ofmeaning1–6, ultimately arriving at
the kindof narrativesweuse to understand theworld7,8. For example, if
a speaker refers to “the secret plan,” we implicitly process the rela-
tionships between words in this construction to understand that
“secret” modifies “plan.” At a higher level, we use the context of the
surrounding narrative to understand themeaning of this phrase—what
does the plan entail, who is keeping it secret, andwho are they keeping
it secret from? This context may comprise hundreds of words
unfolding over the course of several minutes. The human brain is
thought to implement these processes via a series of functionally

specialized computations that transform acoustic speech signals into
actionable representations of meaning9–15.

Traditionally, neuroimaging research has used targeted experi-
mentalmanipulations to isolate particular linguistic computations—for
example, by manipulating the presence/absence or complexity of a
given syntactic structure—andmapped these computations onto brain
activity in controlled settings15–19. While these findings laid the
groundwork for a neurobiology of language, they have limited gen-
eralizability outside the laboratory setting, and it has proven difficult
to synthesize them into a holistic model that can cope with the full
complexity of natural language. This has prompted the field to move
toward more naturalistic comprehension paradigms20–23. However,
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these paradigms introduce their own challenges: principally, how to
explicitly quantify the linguistic content and computations supporting
the richness and expressivity of natural language24–30.

In recent years, the field of natural language processing (NLP)
has been revolutionized by a new generation of deep neural net-
works capitalizing on the Transformer architecture31–33. Transfor-
mers are deep neural networks that forgo recurrent connections34,35

in favor of layered “attention head” circuits, facilitating self-
supervised training on massive real-world text corpora. Following
pioneering work on word embeddings36–38, the Transformer archi-
tecture represents the meaning of words as numerical vectors in a
high-dimensional “embedding” space where closely related words
are located nearer to each other. However, while the previous gen-
eration of embeddings assign each word a single static (i.e., non-
contextual) meaning, Transformers process long sequences of
words simultaneously to assign each word a context-sensitive
meaning. The core circuit motif of the Transformer—the attention
head—incorporates a weighted sum of information exposed by
other words, where the relative weighting “attends” more strongly
to some words than others. The initial embeddings used as input to
the Transformer are non-contextual. Within the Transformer,
attention heads in each layer operate in parallel to update the
contextual embedding, resulting in surprisingly sophisticated
representations of linguistic structure39–42.

The success of Transformers has inspired a growing body of
neuroscientific work using them tomodel human brain activity during
natural language comprehension (43–53; cf.52,54). These efforts have
focused exclusively on the “embeddings”—the Transformer’s repre-
sentation of linguistic content—and have largely overlooked the
“transformations”—the actual computations performed by the atten-
tion heads. Although no functionally-specific language modules are
built into the architecture at initialization, recent work in NLP has
revealed emergent functional specialization in the network after
training55,56. That is, particular attention heads are shown to selectively
implement interpretable linguistic operations. For example, attention
head 10 in the eighth layer of BERT appears to be specialized for
resolving the direct object of a verb (e.g., in “the boy in the yellow coat
greeted his teacher”, the verb “greeted” attends to “boy”), whereas
head 11 in the same layer closely tracks nominal modifiers (e.g.,
attending to “coat” in the phrase modifying “boy”). This is in contrast
to probabilistic syntactic parsers29,54,57, which learn to reproduce a
predefined set of syntactic labels to construct parse trees. The trans-
formations do not explicitly disentangle syntax from the meaning of
words and do not rely on predefined labels; instead they learn to
approximate whatever contextual structures are useful for accurately
predicting words in real-world text. Although the individual heads that
implement these computations operate independently, in parallel,
their transformations are ultimately “fused” together to form the
resulting embedding. Thus, unlike the embeddings, the transforma-
tions at a given layer can be disassembled into the specialized com-
putations performed by the constituent heads. These transformations
are of particular theoretical interest, because they are the unique
component of the circuit that allows information to flow between
words: whatever syntactic or contextual information impacts the
meaning of the current word is introduced solely via the
transformations.

In the current work, we argue that the headwise transformations
—the functionally specialized contextual computations implemented
by individual attention heads—can provide a complementary window
onto linguistic processing in the brain (Fig. 1A). A neurocomputa-
tional theory of natural language processing must ultimately specify
how meaning is constructed across words. The Transformer archi-
tecture provides explicit access to a candidate mechanism for
quantifying how the meaning of past words is incorporated into the
meaning of the current word. If this is an important part of human

language processing, these transformations should provide a good
basis for modeling human brain activity during natural language
comprehension. We extract transformations from the widely-studied
BERT model33,58 and use encoding models to evaluate these trans-
formations against several other families of linguistic features in
terms of predicting brain activity during natural language compre-
hension (Fig. 1B, C). We find that the transformations perform com-
parably to the embeddings, and generally outperform both non-
contextual embeddings and classical syntactic annotations—sug-
gesting that the contextual information extracted from surrounding
words is surprisingly rich. In fact, transformations at earlier layers of
themodel account formore unique variance in brain activity than the
embeddings themselves. Finally, we disassemble these transforma-
tions into the functionally specialized computations performed by
individual attention heads. We find that certain properties of the
heads, such as look-back distance, dominate the mapping between
headwise transformations and cortical language ears. We also find
that, for some language regions, headwise transformations that
preferentially encode certain linguistic dependencies also better
predict brain activity.

Results
We adopted a model-based encoding framework59–61 in order to map
Transformer features onto brain activity measured using fMRI while
subjects listened to naturalistic spoken stories (Fig. 1A). Our principal
theoretical interest lies in the transformations, because these are the
components of the model that introduce contextual information
extracted from other words into the current word. In these models,
any syntactic or compositional structure linking one word to another
must emerge from the transformations implemented by the attention
heads. Although the transformations may approximate certain syn-
tactic operations, they do not explicitly disentangle syntax from the
meaning of words and can incorporate content-rich contextual rela-
tionships. Given that the cortical language network also does not
appear to cleanly differentiate syntax and other linguistic
features46,62–66, we theorized that the transformations may provide a
useful basis for modeling neural activity during natural language
processing.

We pursued two core questions: First, what is the efficacy of these
transformations in predicting brain activity relative to both embed-
dings and other types of language features? We hypothesized that (a)
the transformations would predict brain activity better than other
types of language features; and (b) that the transformations would
map onto cortical language areas in a more layer-specific way than
embeddings, given that the embeddings accumulate contextual
information across layers. Second, we address the exploratory ques-
tion of whether the functional specialization observed in the trans-
formations implemented by individual attention heads maps onto
brain activity in a structuredway.Weoperationalize “shared functional
specialization” as a correspondence wherein headwise transforma-
tions that preferentially encode linguistic dependencies also better
predict brain activity.

We spatially downsampled the brain data according to a fine-
grained functional atlas comprising 1000 cortical parcels67, which
were grouped into a variety of regions of interest (ROIs) spanning
early auditory cortex to high-level language areas68. Parcelwise
encoding models were estimated using banded ridge regression with
three-fold cross-validation for each subject and each story69. Pho-
nemes, phoneme rate, word rate, and a silence indicator were
included as confound variables during model estimation and dis-
carded during model evaluation30. Encoding models were evaluated
by computing the correlation between the predicted and actual time
series for test partitions; correlations were then converted to the
proportion of a noise ceiling estimated via intersubject correlation
(ISC)70 (Fig. S1).
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Functional anatomy of a Transformer model
We take BERT-base33 as a representative Transformer model due to its
success across a broad suite of NLP tasks and the burgeoning literature
studying its internal representations39–42,58,71–76.Words are first assigned
non-contextual static embeddings, which are submitted as input to the
model. Unlike recurrent architectures34,35,57, which process word
embeddings serially, BERT considers long “context windows” of up to
512 tokens and processes all words in the context window in parallel.
Like most Transformer architectures, BERT is composed of a repeated
self-attention motif: 12 sequential layers, each consisting of 12 parallel
attention heads. A single attention head consists of three separate
query, key, and value matrices. At each layer, the input word embed-
dings are multiplied by these matrices to produce a query, key, and
value vector for each word. For an individual word, self-attention then
computes the dot product of that word’s query vector with the key
vector from all words in the context window, resulting in a vector of
attention weights quantifying the relevance of other words. These

weights are used to produce aweighted sumof all value vectors, which
is the output of the attention head. We refer to these 64-dimensional
vectors as the “transformation” produced by that attention head. The
transformation vectors are then concatenated across all headswithin a
layer and passed through a feed-forward module (a multilayer per-
ceptron;MLP) toproducea fused 768-dimensional output embedding,
which serves as the input for the next layer (Fig. 1B). Although the
transformations at a given layer are “cued” by the embedding arriving
from the previous layer, they are not derived from this embedding;
similarly, the transformations are nonlinearly fusedwith the content of
the output embedding (see “Transformer-based features” in Methods
for further details). Embeddings are sometimes referred to as the
“residual stream”: the transformations at one layer are added to the
embedding from the previous layer, so the embeddings accumulate
previous computations that subsequent computations may access77.

The self-attention mechanism can be thought of as a “soft,” or
weighted, key-value store. Each word in the input issues a query which

GloVe

C

linguistics
re

si
du

al
st

re
am

+

+

MLP

embeddings

transformations

layer 6

layer 7

embeddings

transformations

transformation
magnitudes

"the" "secret" "plan" "the" "secret" "plan"

+

transformation
magnitudes

1 x 12 heads/layer768 x 12 layers

64 x 12 heads/layer

time x features features x parcels time x parcels

+ =

BERT

train test

predicted actual

train

test
r

r

r

A

B

stimulus

×××

Fig. 1 | Encoding models for predicting brain activity from the internal com-
ponents of language models. A Various features are used to predict fMRI time
series acquired while subjects listened to naturalistic stories. Based on the stimulus
transcript, we extracted classical linguistic features (e.g., parts of speech; black),
non-contextual semantic features (e.g., GloVe vectors; gray), and internal features
from a widely studied Transformer model (BERT-base). The encoding models are
estimated from a training subset of each story using banded ridge regression and
evaluated on a left-out test segment of each story using three-fold cross-validation.
Model predictions are evaluated by computing the correlation between the pre-
dicted and actual time series for the test set. BWe consider two core components
of the Transformer architecture at each layer (BERT-base and GPT-2 each have 12
layers): embeddings (blue) and transformations (red). Embeddings represent the
contextualized semantic content of the text. Transformations are the output of the
self-attention mechanism for each attention head (BERT-base and GPT-2 have 12
headsper layer, eachproducing a64-dimensional vector). Transformations capture

the contextual information incrementally added to the embedding in that layer.
Finally, we consider the transformation magnitudes (yellow; the L2 norm of each
attention head’s 64-dimensional transformation vector), which represent the
overall activity of a given attention head. MLP: multilayer perceptron. C Attention
headsuse learnedmatrices toproducecontent-sensitive updates to each token. For
a single input token (“plan”) passing through a single head (layer 7, head 12), the
token vector is multiplied by the head’s learned weight matrices (which are invar-
iant across inputs) to produce query (Q), key (K), and value (V) vectors. The inner
product between the query vector for this token (“plan”, Q) and the key vector (K)
for each other token yields a set of “attention weights” that describe how relevant
the other tokens are to “plan.” These “attention weights” are used to linearly
combine the value vectors (V) from the other tokens. The summed output is the
transformation for each head (here, Z12). The results from each attention head in
this layer are concatenated and added back to the token’s original representation.
Figure made using Nilearn, Matplotlib, seaborn, and Inkscape.
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is checked against the keys of all context words. However, unlike a
traditional key-value store (which would only return a single, exact
query-key match), the attention head first computes how well the
query matches with all keys (the attention weights), and returns a
weighted sum of each word’s value based on how closely they match.
The query, key, and value matrices are learned, and recent work has
revealed an emergent functional specialization where specific atten-
tion heads approximate certain syntactic relationships55,56. For exam-
ple, prior work has discovered that a specific head in BERT reliably
represents the direct object relationship between tokens56. In a phrase
such as “hatch the secret plan,” the “plan” token would attend heavily
to the “hatch” token and update its representation accordingly. More
precisely, qplan

T · khatch will yield a large attention weight from “plan”
to “hatch.” As a result, the transformation for “plan,” zplan, will be
heavily weighted towards vhatch (Eq. 1). This allows the attention head
to update the “plan” token’s representation to reflect the fact that it is
being “hatched” (as opposed to being executed, revised, or aban-
doned; or being used in another sense entirely, e.g., an architectural
blueprint).

Transformer-based features outperform other linguistic
features
Before disassembling the transformations into specialized circuit
computations, we first evaluated how well the transformations, con-
sidered in aggregate, perform against other commonly studied lan-
guage features in predicting brain activity. The transformations are the
conduit by which syntactic and contextual information are incorpo-
rated into the current word. We hypothesized that this rich contextual
information would put the transformations on par with the embed-
dings in terms of predicting brain activity, and that the transforma-
tions would outperform other linguistic features. To evaluate these
hypotheses, we compared the encoding performance of features from
three families of language models: (1) classical linguistic features
comprising parts of speech and syntactic dependencies; (2) GloVe

word embeddings37 that capture the “static” or non-contextual mean-
ings of words; and (3) contextualized Transformer features extracted
from BERT—namely, layer-wise embeddings, transformations, and
transformation magnitudes. For each TR, we appended the words
from the preceding 20 TRs as context. BERT was allowed to perform
bidirectional attention across the tokens in these 21 TRs, after which
the context tokens were discarded, and the TR tokens were averaged
to obtain the Transformer features. To summarize the overall perfor-
mance of these different Transformer features, we concatenated fea-
tures across all heads and layers, allowing the regularized encoding
model to select the best-performing combination of those features
across the entire network. We use these features to predict response
time series in cortical parcels comprising ten language ROIs ranging
from early auditory cortex to high-level, left-hemisphere language
areas (Fig. 2; see Fig. S2 for right-hemisphere results). Based on prior
work50,78, we expected the BERT embeddings to outperform the GloVe
and linguistic features. We further hypothesized that the set of trans-
formations would perform on par with the embeddings. Finally, we
hypothesized that the transformation magnitudes, intended to cap-
ture the relative contribution of each head, abstracted away from the
semantic content, would more closely match the performance of
classical linguistic features.

First, we confirmed that Transformer embeddings and transfor-
mations outperform classical linguistic features inmost language ROIs
(p <0.005 in HG, PostTemp, AntTemp, AngG, IFG, IFGorb, vmPFC,
dmPFC, and PMC for both embeddings and transformations; permu-
tation test; FDR corrected; Table S1). In a follow-up analysis, we found
that embeddings and transformations also outperform an “effort”
metric extracted from a state-of-the-art incremental sentence parser79

in almost all language ROIs (Fig. S3). Contextual Transformer embed-
dings also outperform non-contextual GloVe embeddings across sev-
eral ROIs in keeping with prior work50,78. Interestingly, transformation
magnitudes outperform GloVe embeddings and classical linguistic
features in lateral temporal areas but not in higher-level language
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Fig. 2 | Comparing three classes of language models across cortical
language areas. We used encoding models to evaluate the performance of three
different classes of language models: classical linguistic features, non-contextual
word embeddings (GloVe), and contextual Transformer features (BERT). Among
the Transformer features, embeddings capture the contextual semantic content of
words, transformations capture the contextual transformations that yield these
embeddings, and transformation magnitudes capture the non-semantic contribu-
tion of each head to a given token. For this analysis, Transformer features were
concatenated across all heads and layers. Only left-hemisphere language ROIs are
included here; right-hemisphere language ROIs yielded qualitatively similar results

(Fig. S2). Model performance is evaluated in terms of the percent of a noise ceiling
estimated using intersubject correlation (see “Noise ceiling estimation” in “Meth-
ods” for further details; Fig. S1). Markers indicate median performance across
participants (N = 63 subjects) and error bars indicate 95% bootstrap confidence
intervals. HGHeschl’s gyrus, PostTemp posterior temporal lobe, AntTemp anterior
temporal lobe, AngG angular gyrus, IFG inferior frontal gyrus, IFGorb orbital
inferior frontal gyrus, MFG middle frontal gyrus, vmPFC ventromedial prefrontal
cortex, dmPFC dorsomedial prefrontal cortex, PMC posterior medial cortex.
Source data are provided as a Source Data file. Figure made using Nilearn, Mat-
plotlib, seaborn, and Inkscape.
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areas: for example, transformation magnitudes outperform GloVe
embeddings in posterior and anterior temporal areas, but this pattern
is reversed in the angular gyrus. Finally, we found that the transfor-
mations roughly match the embeddings across all ROIs. This overall
pattern of results was replicated in the autoregressive GPT-2 mod-
el (Fig. S4). Note that despite yielding similar encoding performance,
the embeddings and transformations are fundamentally different;
for example, the average TR-by-TR correlation between embeddings
and transformations across both stimuli is effectively zero
(−0.004 ± 0.009 SD), and the embeddings and transformations arenot
correlated across layers (Fig. S5). This is expected, given that embed-
dings and transformations reside in different feature spaces, where the
transformations are translated into the embedding space by an MLP.
The embeddings and transformations also yield visiblydifferent TR-by-
TR representational geometries (Fig. S6), and the transformations
have considerably higher temporal autocorrelation than the embed-
dings (Fig. S7). As a control analysis, we evaluated these features in a
non-language ROI (early visual cortex) and found that no models
captured a significant amount of variance (Fig. S8). Overall, these
findings suggest that the transformations capture a considerable
proportion of variance of neural activity across the cortical language
network and motivate more detailed treatment of their functional
properties.

Layerwise performance of embeddings and transformations
We next segregated the Transformer features into separate layers.
There is an important theoretical distinction in the layer-by-layer
structure of the embeddings and transformations arising from the
architecture of the network. The embeddings encode the meaning of
the current word and become increasingly contextualized from
layer to layer55. Residual connections allow the embeddings to pro-
pagate and accumulate information across layers77. The transforma-
tions, on the other hand, capture the “updates” to the embedding at
each layer—derived from other words in the surrounding context.
The transformations are largely independent from layer to layer
(Fig. S9) and producemore layer-specific representational geometries
(Figs. S10 and S11). Based on these distinct computational roles, we

hypothesized that the transformations would map onto the brain in a
more layer-specific way than the embeddings.

First, we found that, across language ROIs, the performance of
contextual embeddings increased roughly monotonically across lay-
ers, peaking in late-intermediate or final layers (Figs. S12A and S13),
replicating prior work43,47,80,81. Interestingly, this pattern was observed
across most ROIs, suggesting that the hierarchy of layerwise embed-
dings does not cleanly map onto a cortical hierarchy for language
comprehension. Transformations, on the other hand, seem to yield
more layer-specific fluctuations in performance than embeddings and
tend to peak at earlier layers than embeddings (Figs. S12B, C and S14).

We next visualized layer preference across cortex—that is, which
layer yielded the peak performance for a given cortical parcel (Fig. 3A).
Across language parcels, the average performance (across partici-
pants) for transformations peaked at significantly earlier layers than
performance for embeddings (mean preferred transformation layer =
7.2; mean preferred embedding layer = 8.9; p < 0.001, permutation
test). To evaluate the unique contributions of transformations- and
embedding-based predictions at each layer, we performed a partial
correlation analysis: we measured the correlation between
transformation-based predictions and brain activity while controlling
for the embedding-based predictions (and vice versa; Fig. 3B). We
found that transformation-based predictions capture more unique
variance at earlier layers than embedding-based predictions; embed-
dings, on the other hand, accumulate information over time and cap-
ture the most unique variance at later layers. Finally, we quantified the
magnitude of difference in predictive performance from layer to layer
and found that transformationshave larger differences in performance
between neighboring layers (mean layerwise embedding difference =
7.6, mean layerwise transformation difference = 14.3; p <0.001, per-
mutation test; Fig. 3C). These results recapitulate the progression of
layer specificity reported in the literature43,47,80,81, and suggest that the
computations implemented by the transformations are more layer-
specific than the embeddings. However, we contend that these layer-
wise trends provide only a coarse view of functional specialization:
individual attention heads perform strikingly diverse linguistic opera-
tions even within a given layer.

A

transformations

preferred layer

B

C

embeddings

Fig. 3 | Layer preferences for embeddings and transformations. A Layer pre-
ferences are visualized on the cortical surface for embeddings (upper) and trans-
formations (lower). While most cortical parcels prefer the final embedding layers,
the transformations reveal a cortical hierarchy of increasing layer preference. Only
cortical parcels with encoding performance greater than 20% of the noise ceiling
for both embeddings and transformations are included for visualization purposes.
The same color map for preferred layer is used for both embeddings and trans-
formations. B Partial correlations between brain activity and model-based predic-
tions derived fromembeddings (blue) and transformations (red). For each layer,we
measured the correlation between transformation-based predictions and brain

activity while controlling for the embedding-based predictions (and vice versa).
Partial correlations at each layer were averaged across parcels in the cortical lan-
guage network. Error bars denote 95% bootstrap confidence intervals across sub-
jects (N = 63). C Distribution of the magnitude of layer-to-layer differences in
encoding performance for embeddings and transformations; this metric of layer
specificity is quantified as the L2 norm of the first differences between encoding
performance for neighboring layers. Transformations (red) yield more layer-
specific deviations in performance than embeddings (blue). Source data are pro-
vided as a Source Data file. Figure made using SUMA, Matplotlib, seaborn, and
Inkscape.
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Interpreting transformations via headwise analysis
Does the emergent functional specialization of internal computations
in the languagemodel reflect functional specialization observed in the
cortical language network? To begin answering this question, we first
directly examined how well classical linguistic features—indicator
variables identifying parts of speech and syntactic dependencies—map
onto cortical activity. Despite a large body of work using experimental
manipulations of phrases and sentences to dissociate syntax from
semantics and localize syntactic operations in the brain82–88, results
have been mixed, leading some authors to suggest that syntactic
computations may be fundamentally entangled with semantic repre-
sentation and distributed throughout the language network46,63–66.
Along these lines, we found that classical linguistic features are poor
predictors of brain activity and do not provide a good basis for
examining functional specialization in the cortical language network in
the context of naturalistic narratives (Figs. 2, S3, and S15).

BERT’s training regime has been shown to yield an emergent
headwise functional specialization for particular linguistic
operations55,56. BERT is not explicitly instructed to represent syntactic
dependencies, but nonetheless seems to learn coarse approximations
of certain linguistic operations from the structure of real-world
language56.

We split the transformations at each layer into their functionally
specialized components—the constituent transformations imple-
mented by each attention head. In the following analyses, we leverage
these functionally specialized headwise transformations to map
between syntactic operations and the brain in a way that retains some
level of interpretability, but respects the contextual nature of real-
world language. Note that the embeddings incorporate information
from all the transformations at a given layer (and prior layers), and
therefore cannot bemeaningfully disassembled in this way.We trained
an encoding model on all transformations and then evaluated the
prediction performance for each head individually, yielding an esti-
mate of how well each head predicts each cortical parcel (or headwise
brain prediction score). For each attention head, we also trained a set
of decoding models to determine how much information that head
contains about a given syntactic dependency (or headwise depen-
dency prediction score; Fig. S16). In line with prior work55,56, we
empirically confirmed that the transformations at certain attention
heads preferentially encode certain linguistic dependencies in our
stimuli (Table S2).

For each classical syntactic dependency, we first identified the
attention head that best predicts that dependency (for example, head
11 of layer 6 best predicts the direct object dependency, Fig. S15). We
compared the encoding performance for each classical dependency
with the encoding performance for the headwise transformation that
best predicts that dependency. We found that the head most asso-
ciated with a given dependency generally outperformed the depen-
dency itself (Fig. S15; see Fig. S17 replication using functionally
specialized heads derived from larger text corpora56). This confirmed
our expectation that the dense, emergent headwise transformations
are better predictors of brain activity than the sparse, classical lin-
guistic indicator variables. Note that the headwise transformations are
considerably higher-dimensional (64 dimensions) than the corre-
spondingone-dimensional dependency indicators.However,we found
that even after reducing a given transformation to a single dimension
that best predicts the corresponding dependency, the one-
dimensional transformation still better predicts brain activity than
the dependency itself (Fig. S18). We found that these one-dimensional
transformation time series are highly correlated with the corre-
sponding dependency indicators, but reflect a continuous, graded
representation of the dependency over the course of a narrative
(Fig. S19). Although the computations performed by these heads
approximate particular syntactic operations, they capture a more
holistic relationship between words in the context of the narrative.

That is, the transformations do not simply indicate the presence, for
example, of a direct object relationship; rather, they capture an
approximation of the direct object relationship in the context of the
ongoing narrative.

Critically, BERT does not just learn to approximate certain clas-
sical syntactic operations; it learns a rich multiplicity of linguistic and
contextual relations from natural language, a subset of which can be
said to approximate classical syntactic labels58. With this in mind, we
pursued a data-driven analysis to summarize the contributions of all
headwise transformations across the entire language network
(Fig. 4A). We first obtained the trained encoding model for all trans-
formations (Fig. 1, red) and averaged the regression coefficients (i.e.,
weight matrices) assigned to the transformation features across sub-
jects and stimuli. To summarize the importance of each head for a
given parcel, we segmented the learned weight matrix from the
encoding model for that parcel into the individual attention heads at
each layer and computed the L2 norm of the headwise encoding
weights. This results in a single value for each of the 144 heads
reflecting the magnitude of each head’s contribution to encoding
performance at each parcel; these vectors capture each parcel’s “tun-
ing curve” across the attention heads. In order to summarize the
contribution of headwise transformations across the language net-
work, we aggregated the headwise encoding weight vectors across
parcels in language ROIs and used principal component analysis (PCA)
to reduce the dimensionality of this transformation weight matrix
across parcels, following Huth and colleagues30. This yields a basis set
of orthogonal (uncorrelated), 144-dimensional weight vectors captur-
ing the most variance in the headwise transformation weights across
all language parcels; each head corresponds to a location in this low-
dimensional brain space. The first two principal components (PCs)
accounted for 92% of the variance in weight vectors across parcels,
while the first nine PCs accounted for 95% of the variance. A given PC
can be projected into (i.e., reconstructed in) the original space of
cortical parcels, yielding a brain map where positive and negative
values indicate positive and negative transformation weights along
that PC (Fig. S20). Visualizing these PCs directly on the brain reveals
that PC1 ranges from strongly positive values (red) in bilateral pos-
terior temporal parcels and left lateral prefrontal cortex towidespread
negative values (blue) inmedial prefrontal cortex (Fig. 4B). PC2 ranged
from positive values (red) in prefrontal cortex and left anterior tem-
poral areas to negative values (blue) in partially right-lateralized tem-
poral areas (Fig. 4C). Note that the polarity of these PCs is consistent
across all analyses, but is otherwise arbitrary.

We next examined whether there is any meaningful structure in
the “geometry” of headwise transformations in this reduced-
dimension cortical space. To do this, we visualized several structural
and functional properties of the heads in two-dimensional projections
of the language network. We first visualized the layer of each head in
this low-dimensional brain space and found a layer gradient across
heads in PC1 and PC2 (Fig. 4D). PCs 9, 5, and 1 were the PCs most
correlated with layer assignment with r =0.45, 0.40, and 0.26,
respectively (Figs. S20 and S21). Intermediate layers were generally
located in the negative quadrant of both PC1 and PC2 (corresponding
to blue parcels in Fig. 4B, C; e.g., posterolateral temporal cortex), with
early and late layers located in the positive quadrant (red parcels). For
eachhead,wenext computed the averagebackwardattentiondistance
across stimuli. PCs 2, 1, and 3 were the PCs most correlated with
backward attention distance with r = 0.65, 0.20, 0.19, respectively
(Figs. S20 and S22). We observed a strong gradient of look-back dis-
tance increasing along PC2 (Fig. 4E); that is, prefrontal and left anterior
temporal parcels (red parcels in Fig. 4C) correspond to heads with
longer look-back distances. Note that the upper quartile of headwise
attention distances exceeds 30 tokens, corresponding to look-back
distances on the scale of multiple sentences. We also found that the
functionally specialized heads previously reported in the literature56
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span PC1 and cluster at the negative end of PC2 (corresponding to
intermediate layers and relatively recent look-back distance; Fig. 4F).
Finally, we visualized the headwise dependency prediction scores in
this low-dimensional brain space and observed gradients in different
directions along PC1 and PC2 for different dependencies (Fig. S23).
Note that none of the aforementioned structural or functional prop-
erties of the heads thatwe visualize in this low-dimensional brain space
are derived from the brain data; that is, the encoding models do not
“know” the layer or backward attention distance of any given head.

We next devised a control analysis to test whether the structure
observed in Fig. 4 depends on the organization of transformation
features into functionally specialized heads. We shuffled the coeffi-
cients assigned to transformation features by the encoding model
across heads within each layer of BERT. We then repeated the same
analysis: we segmented the shuffled transformation features back into
“pseudo-heads,” computed the L2 normof the coefficients within each
pseudo-head, and applied PCA across language parcels. This pertur-
bation disrupts the emergent functional grouping of transformation
features into particular heads observed in the unperturbed model.

After this perturbation, the first two PCs accounted for only 17% of
variance across language parcels (reduced from 92% in the unper-
turbed model). PCs were dramatically less correlated with layer
assignment (maximum r across PCs reduced from 0.45 to 0.25) and
look-back distance (maximumr across PCs reduced from0.65 to0.26).
Finally, this perturbation abolished any visible geometry of layer, look-
back distance, or headwise dependency decoding in the low-
dimensional projection onto PCs 1 and 2 (Fig. S22). This control ana-
lysis indicates that the structure observed in Fig. 4 does not arise tri-
vially, and results from the grouping of transformation features into
functionally specialized heads; transformation features map onto
brain activity in a way that systematically varies head by head, and
shuffling features across heads (even within layers) disrupts this
structure (Fig. S24). We observed similar trends in GPT-2 (Fig. S25);
interestingly, however, look-back distance was most highly correlated
with PC1 (r =0.77), and layer was highly correlated with PC3 (r =0.60).

Finally, to quantify the correspondence between the syntactic
information contained in a given head and that head’s prediction
performance in the brain, we computed the correlation, across

D Layer

B CPC1 parcelwise weights PC2 parcelwise weights

E Backward attention F Specialized headsLayer Backward attention Specialized heads

transformations
time x features features x parcels

+
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=

summarize weights
within each head 

heads x parcels summarize weights
across parcels

L2 norm

heads x PCs

PCA PC1

PC1 PC2

PC2

weight +–weight +–

Summarizing headwise transformations across the language network

144 heads

Fig. 4 | Headwise transformations in a low-dimensional brain space. A We
applied PCA to the weight vectors for transformation encoding models across
language parcels, effectively projecting the transformation weights into a low-
dimensional brain space30. We first obtain the parcelwise weight vectors for the
encoding model trained to predict brain activity from BERT transformations. This
transformation weight matrix is shaped (768 features × 12 layers) 9,216 features ×
192 language parcels. We use the L2 norm to summarize the weights within each
head, reducing this matrix to (12 heads × 12 layers) 144 heads × 192 language par-
cels. We next summarize these headwise weights across language parcels using
PCA. At right, we visualize the headwise transformationweights projected onto the

first two PCs. Each data point corresponds to one of 144 heads. Furthermore, each
PC can be projected back onto the language network (see Fig. S24 for a control
analysis).B, C PC1 and PC2 projected back onto the language parcels; red indicates
positive weights, and blue indicates negative weights along the corresponding PC.
D Heads colored according to their layer in BERT in the reduced-dimension space
of PC1 and PC2. E Heads colored according to their average backward attention
distance in the story stimuli (look-back tokendistance is colored according to a log-
scale). FHeads highlighted in red have been reported as functionally specialized by
Clark and colleagues56. Source data are provided as a Source Data file. Figuremade
using Nilearn, Matplotlib, seaborn, and Inkscape.
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attention heads, between the brain prediction and dependency pre-
diction scores (Fig. 5A, B). We repeated this analysis for each syntactic
dependency and the parcels comprising each language ROI (Fig. S26).
Headwise correspondence between dependencies and ROIs indicates
that attentionheads containing information about a givendependency
also tend to contain information about brain activity for a given ROI—
thus linking that ROI to the computation of that dependency. We
found that the correspondence between brain prediction and depen-
dency prediction scores varied considerably across ROIs. For example,
in posterior superior temporal cortex, we observed headwise predic-
tion correspondence for clausal complement (ccomp), direct object
(dobj), and preposition object (pobj) relations. In IFG, on the other
hand, headwise prediction correspondence was observed only for the
clausal complement relation. Headwise prediction correspondence
was high in the angular gyrus and MFG across dependencies: for
example, attention heads that predict the existence of a nominal
subject relationship (nsubj) also tend to predict the MFG, but not the
dmPFC; heads that predict direct object (dobj) tend to predict the

angular gyrus, but this relationship is weaker in the vmPFC. In the case
of MFG, this is consistent with prior work implicating MFG in both
language comprehension and more general cognitive demand (e.g.,
working memory89,90). Collapsing across dependencies highlights the
discrepancy between ROIs (Fig. 5C). The angular gyrus and MFG dis-
play a relatively high correspondence; in contrast, the vmPFC and
dmPFC display virtually no correspondence. While transformations
explain significant variance in these ROIs at the scale of the full model
(Fig. 2), individual layers (Fig. S12), and individual heads (Fig. 5A), their
prediction performance for the brain does not correlate with their
prediction performance for classic syntactic dependencies—suggest-
ing that the shared information between transformations and certain
ROIs may be semantic in nature or reflect contextual relationships
beyond the scope of classical syntax.

To ensure the observed correspondence does not arise trivially,
we designed two control analyses. In the first control analysis, we
shuffled the transformation features across heads within each layer of
BERT and then performed the same functional correspondence
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Fig. 5 | Correspondence between headwise brain and dependency predictions.
A Correlation between headwise brain prediction and dependency prediction
scores, for example, ROIs and dependencies; nominal subject (nsubj) in MFG and
dmPFC, direct object (dobj) in AngG and vmPFC (see Fig. S26 for correlations
plotted for all ROIs anddependencies). Eachpoint in the scatter plot represents the
dependency prediction (x axis) and brain prediction (y axis) scores for each of the
144 heads. Brain prediction scores reflect cross-validated encoding model perfor-
mance evaluated in terms of the percent of a noise ceiling estimated using inter-
subject correlation. Dependency prediction scores reflect the classification
accuracy of a cross-validated logistic regression model trained to predict the
occurrence of a given linguistic dependency at each TR from the 64-dimensional
transformation vector for a given attention head. Each of these plots corresponds
to a labeled cell in the dependencies-by-ROI correlation matrix in B. Error bands
around the line of best fit represent 95% bootstrapped confidence intervals.
B Correlation between headwise brain prediction and dependency prediction

scores for each language ROI and syntactic dependency. Dependencies (y axis) are
ordered by their token distance; e.g., the adjectival modifier (amod) spans fewer
tokens on average than the clausal complement (ccomp; see “Methods” for details).
Cells with black borders contain significant correlations as determined by a two-
tailed permutation test in which we shuffle assignments between headwise
dependency prediction scores and brain prediction scores across heads (FDR
controlled at p <0.05). Labeled cells correspond to the example correlations in A.
Dependencies are described in Table S5. C We summarize the brain–dependency
prediction correspondence for each ROI by averaging across syntactic dependen-
cies (i.e., averaging each columnofB). Error bars indicate 95%bootstrap confidence
intervals around the mean across N = 12 dependencies. Each data point denotes a
dependency, and black borders indicate dependencies with significant corre-
spondence. Source data are provided as a Source Data file. Figure made using
Matplotlib, seaborn, and Inkscape.
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analysis. This control analysis tests whether the observed correspon-
dence depends on the functional organization of transformation fea-
tures into particular heads. Perturbing the functional grouping of
transformation features into heads reduced both brain and depen-
dency prediction performance and effectively abolished the headwise
correspondence between dependencies and language ROIs (Fig. S27).
In the second control, we supplied our stimulus transcripts to an
untrained, randomly initialized BERT architecture, extracted the
resulting transformations, and evaluated headwise correspondence
with the brain. Headwise functional correspondence was similarly
abolished for the untrained model (Fig. S28). This indicates that the
correspondence is not simply a byproduct of the model’s architecture
or our experimental stimuli, but depends in part on themodel learning
certain statistical structures in real-world language. Finally, to ensure
that our approach generalizes across models, we replicated this ana-
lysis in GPT-2. GPT-2 yielded higher correspondence values, particu-
larly in IFG, but with less specificity across ROIs (Fig. S29). Note that
GPT-2 and BERT have different architectures and different training
regimes; given that the models have similar encoding performance
overall (Fig. S4), the observed differences in functional correspon-
dence highlight the sensitivity of our headwise analytic framework.

Discussion
In the current study, we evaluated the transformations implemented
by the attention heads of BERT against several other kinds of linguistic
features in terms of predicting brain activity. There are three proper-
ties of the transformations that motivated our analyses. First, the
transformations are the component of the model that allow informa-
tion to flow between words: all syntactic, compositional, and con-
textual relations across words are generated by the transformations.
Unlike classical syntactic annotations and syntactic parsers, however,
the transformations do not explicitly disentangle syntax from word
meaning and will learn to approximate whatever contextual relations
are useful for predicting words in real-world text. Second, unlike the
embeddings, which accumulate information from layer to layer, the
transformations encode “updates” to the embedding at each layer,
derived from the surrounding context. Third, the transformations at a
given layer can be disassembled into the functionally specialized
computations performed by individual attention heads. These prop-
erties are of particular theoretical interest for understanding how
neural systems like the brain construct context-rich meaning across
individualwords in natural language.While a growingbodyofworkhas
used the Transformer architecture32,33 to model the neural basis of
human language processing43,44,47,50,51,78,80, we contribute a com-
plementary perspective on how to relate thesemodels to human brain
activity.

We found that the transformations provide a surprisingly good
basis for modeling human brain activity during natural language
comprehension. The transformations perform on par with the
embeddings and outperform other linguistic features across most
language ROIs, suggesting that the contextual information the trans-
formations extract from surrounding words is surprisingly rich. We
also found that the transformations at earlier layers of the model
account formore unique variance than the embeddings, andmaponto
cortical language areas in a more layer-specific fashion. Examining the
contribution of headwise transformations to encoding performance
reveals gradients in a low-dimensional cortical space that reflect cer-
tain structural and functional properties of the headwise transforma-
tions, including layer and look-back distance. Finally, we quantified the
correspondence between headwise predictions of brain activity and
syntactic dependencies for a variety of cortical language areas and
dependencies, and found that headwise transformations that best
predict certain dependencies also best predict certain ROIs (e.g.,
PostTemp, AngG, MFG). We show that this correspondence does not
arise arbitrarily, but depends on the functional grouping of

transformations into heads, and on the model’s architecture and
training regime.

To build an intuition for why the transformations may provide
complementary insights to the embeddings, we can compare Trans-
formers to convolutional neural networks (CNNs) commonly used in
visual neuroscience61,91. CNNs typically reduce dimensionality across
layers92,93, putting pressure on the model to gradually discard task-
irrelevant, low-level information and retain only high-level semantic
content. In contrast, popular Transformer architectures maintain the
same dimensionality across layers. Thus Transformer embeddings can
aggregate information (from context words) across layers, such that
later layers tend to contain the most information55 (albeit over-
specialized for a particular downstream training objective; i.e., the
cloze task for BERT). In this light, it is unsurprising that encoding
performance tends to peak at later embedding layers. Indeed, unlike
the structural correspondence between CNN layers and the visual
processing hierarchy61,94,95, Transformer embeddings are highly pre-
dictive but relatively uninformative for localizing stages of language
processing. Unlike the embeddings, the transformations reflect
updates to word meanings at each layer. Encoding models based on
the transformations must “choose” a step in the contextualization
process, rather than “have it all” by simply using later layers.

Despite the formal distinction between syntax and lexico-
semantics in linguistics, the neural computations supporting human
language may not so cleanly dissociate syntactic and semantic
processing46,62–66, especially during natural language comprehension,
where syntax and semantics are typically intertwined. In practice, we
found that classical linguistic features (i.e., parts of speech, syntactic
dependencies, parser effort) are relatively poor predictors of brain
activity during natural language comprehension (Figs. 2, S3 and S18).
Although Transformer models implicitly learn syntactic and compo-
sitional operations in order to produce well-formed linguistic outputs,
these emergent structures are generally entangled with semantic
content41,42,96. Indeed, much of our theoretical interest in the trans-
formations stems from the observation that, although they approx-
imate syntactic operations to some extent, they can also more
expressively code for content- and context-rich relationships across
words. We attribute the relatively strong prediction performance of
the transformations to this rich contextual information.

While the transformations used in the current analysis capture
syntactic and contextual operations entangled with semantic content,
the transformation magnitudes can serve to disentangle syntax and
semantics. Prior work has sought to isolate the two using artificial
stimuli and vector subtraction on the embeddings46; the transforma-
tion magnitudes instead reduce the transformations down to the
“activation” of individual attention heads. Insights from NLP56 suggest
this metric, which circumvents the stimulus representation entirely,
nonetheless contains an emergent form of syntactic information. Our
comparison to classical linguistic features (Figs. 2 and S3) suggests this
is the case: transformation magnitudes outperform classical linguistic
features in temporal language areas, and perform comparably else-
where. Interestingly, the transformation magnitudes also outperform
the non-contextual word embeddings in temporal areas (Fig. 2), while
this relationship is reversed in angular gyrus, a putative high-level
convergence zone for semantic representation97.

We adopted a data-driven approach to describe the properties of
the transformations predominant in brain activity during naturalistic
language processing. The gradients depicted in Fig. 4 are most easily
understood as summarizing the language network’s top two (ortho-
gonal) tuning curves across the transformations implemented by 144
attention heads in BERT. The distance attention heads tend to “look
back” in the narrative (Fig. 4, PC2), and to a lesser extent layer
assignment (Fig. 4, PC1), accounted for considerable variance in the
mapping between the headwise transformation and the cortical lan-
guage network. We found that the functional properties of the
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headwise transformations do, in fact, map onto certain cortical loca-
lization trends previously reported in the literature. For example, Fig. 4
revealed that posterior temporal areas assign higher weights to heads
at earlier layers (positive values along PC1) with shorter look-back
distance (negative values along PC2), consistent with previous work
suggesting that posterior temporal areas performearly-stage syntactic
(and lexico-semantic) processing15,98–100. Headwise correspondence in
posterior temporal cortex was high for the ccomp and dobj depen-
dencies (Fig. 5), which are involved in resolving the meaning of verb
phrases, corroborating prior work implicating posterior temporal
areas in verb–argument integration86,101,102. We also found that left-
lateralized anterior temporal and anterior prefrontal cortices were
associated with longer look-back attention distances (positive values
along PC2; Fig. 4), suggesting that these regions may have longer
temporal receptive windows14,103–105 and compute longer-range con-
textual dependencies, including event- or narrative-level relations106–111.
Interestingly, the IFG (pars opercularis and triangularis; i.e., Broca’s
area) was not strongly associated with heads specialized for particular
syntactic operations (Fig. 5B, C), despite being well-predicted by both
BERT embeddings and transformations (Fig. 2). There are several
possible explanations for this: (1) the natural language stimuli used
heremay not contain sufficient syntactic complexity to tax IFG; (2) the
cortical parcellation used here may yield imprecise functional locali-
zation of IFG112,113; and (3) the IFG may be more involved in language
production than passive comprehension114.

Although the transformations yield relatively strong prediction
performance, they are not positioned to serve as mechanistic models
of cortical language processing—just because a model predicts brain
activity better than other models does not make it a good model115–117.
That said, the transformations occupy a relatively underexplored
space among theories of language processing: the transformations
capture content-rich contextual relationships acrosswords that inflect
themeaning of the current word. This is in contrast to lexical-semantic
models that capture only themeaning of individual words and parsing
models that capture syntactic relationships among words without
contextual meaning. While the embeddings (and resulting word pre-
dictions) are the “final product” of the contextualization process in
Transformer-based models, the transformations capture the con-
textual processes that build up to this end point. More broadly, the
human language system and end-to-end large languagemodels do—to
some extent—share common computational principles aimed at pro-
ducing well-formed, context-sensitive linguistic outputs50,118: these
models represent the unique meaning of words in context; these
models are not “given” linguistic structures, but rather learn linguistic
structure from natural language using a biologically-plausible, self-
supervised objective function; these structures are encoded in high-
dimensional embedding spaces across relatively simple computing
elements; finally, these models better reproduce human-like perfor-
mance than prior generations of models across a variety of natural
language tasks31,33,119–122.

Our results suggest several future lines of research. Prior work has
explored different Transformer architectures78,80 aiming to establish a
structural mapping between Transformers and the brain. Toward this
end, training “bottlenecked” Transformer models that successively
reduce the dimensionality of linguistic representations—similar to
CNNs—may produce more hierarchical embeddings and provide a
better structural mapping onto cortical language circuits123. Second,
the current work sidesteps the acoustic and prosodic features of nat-
ural speech124,125; the models we used operate on sequences of tokens
in text and do not encode finer-grained temporal features of speech.
Futurework, however, maybenefit frommodels that extract high-level
contextual semantic content directly from the temporally-resolved
speech signal (in the same way that CNNs operate directly on pixel
values126–129). Third, we found that, although BERT and GPT-2 perform
similarly when both mapping embeddings and transformations onto

brain activity78,80, they differ in terms of headwise correspondence.
This suggests that headwise analysis may be sensitive to differences in
model–brain correspondence that are obscured when considering
only the embeddings. Finally, current neurobiological models of lan-
guage highlight the importance of long-range fiber tracts connecting
the nodes of the language network130–132; we suspect that future lan-
guagemodels withmore biologically-inspired circuit connectivitymay
provide insights not only into functional specialization but also func-
tional integration across specialized modules.

Transformer-based large language models like BERT and GPT
obtain state-of-the-art performance on multiple NLP tasks. BERT’s
attention heads are functionally specialized and learn to approximate
classical syntactic operations in order to produce contextualized nat-
ural language55,56. The rapidly developing field of BERTology58 seeks to
characterize this emergent functional specialization. In both language
models and the human language network, emergent functional spe-
cialization likely reflects both architectural constraints and the statis-
tical structureof natural language133–136. In thiswork,we tookafirst step
toward bridging between BERTology’s insights and language proces-
sing in the brain. Althoughwe do not find a direct one-to-onemapping
between attention heads, linguistic dependencies, and cortical areas,
our findings suggest that certain trends in functional organization—
such as a gradient of increasing contextual look-back distance—may be
shared. Mapping the internal structure of large language models to
cortical language circuits can bring us closer to a mechanistic under-
standing of human language processing, and may ultimately provide
insights into how and why this kind of functional specialization
emerges in both large language models and the brain.

Methods
Experimental data
Models were evaluated on two story datasets from the publicly avail-
able “Narratives” collection of fMRI datasets acquired while subjects
listened to naturalistic spoken stories137. Code used to analyze the data
is available at the accompanying GitHub repository: https://github.
com/tsumers/bert-brains. The “Slumlord” and “Reach for the StarsOne
Small Step at a Time” dataset includes 18 subjects (ages: 18–27 years,
mean age: 21 years, 9 reported female) and comprises two separate
stories roughly 13min (550 TRs) and 2600 words in total. The “I Knew
YouWere Black” dataset includes 45 subjects (ages: 18–53 years, mean
age: 23.3 years, 33 reported female); the story is roughly 13min (534
TRs) long and contains roughly 1500 words. All participants provided
informed, written consent prior to data collection in accordance with
experimental procedures approved by Princeton University Institu-
tional Review Board. All functional MRI datasets were acquired with a
1.5 s TR137, and were organized in compliance with the Brain Imaging
Data Structure138. The number of TRs in our analyses was determined
by the duration of the naturalistic spoken story stimuli; e.g., the “I
Knew You Were Black” story told live by Carol Daniel for the Moth
Radio Hour (https://themoth.org/stories/i-knew-you-were-black) was
800 s (13min, 20 s) long, corresponding to 534 TRs with a 1.5-
second TR.

Preprocessed MRI data were obtained from the Narratives deri-
vatives release137. Briefly, the following preprocessing steps were
applied to the functional MRI data using fMRIPrep 20.0.5139: suscept-
ibility distortion correction (using fMRIPrep’s fieldmap-less approach),
slice-timing correction, volume registration, and spatial normalization
to MNI space (MNI152NLin2009cAsym template). Confound regres-
sion was then implemented using 3dTproject140 in AFNI 19.3.0 with the
following confound regressors: six head motion parameters, the first
five aCompCor components fromCSF and fromwhitematter141, cosine
bases for high-pass filtering (cutoff: 128 s), and first- and second-order
polynomial trends. Non-smoothed functional data were used for all
analyses in the current study. To harmonize datasets with differing
spatial resolution and reduce computational demands, we resampled
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all functional data to a fine-grained 1000-parcel cortical parcellation
derived from intrinsic functional connectivity67. That is, time series
were averaged across voxels within each parcel to yield a single aver-
age response time series per parcel (within each subject and story
dataset).

We constructed a set of 10 ROIs intended to span the cortical
hierarchy for language and narrative processing from low-level sen-
sory areas (e.g., HG) to high-level association areas (e.g., PMC). First,
we extracted language ROIs from Fedorenko and colleagues68: Post-
Temp, AntTemp, AngG, IFG, IFGorb, and MFG. We roughly defined
each ROI as the set of parcels from the 1000-parcel atlas in which over
50% of voxels in the parcel overlapped with voxels assigned to the ROI
in MNI space. At the bottom of the hierarchy, we added the early
auditory cortex (Heschl’s gyrus; HG), extracted from the Harvard-
Oxford Atlas. At the upper end of the hierarchy, we added vmPFC,
dmPFC, and PMC ROIs, manually defined from the Schaefer parcella-
tion, to capture the representation of higher-level narratives features
and events108,142. These ROIs encompass most of the brain areas with
reliable, stimulus-driven activity when subjects listen to spoken
stories137.

Allfigureswere created by the authors using free andopen-source
software: Nilearn143, SUMA140, Matplotlib144, seaborn145, and Inkscape.

Baseline language features
Language model representations were derived from the time-locked
phoneme- and word-level transcripts available in the Narratives
dataset137. Words were assigned to the fMRI volumes based on the
ending timestamps; e.g., if a word began in one TR and ended in the
following TR, it was assigned to the second TR. The following low-level
acoustic and linguistic features were extracted for each TR to serve as
confound variables in subsequent analyses: (a) the number of words
per TR, (b) number of phonemes per TR, and (c) a binary vector
indicating the presence of individual phonemes per TR. These are the
same confound variables used in ref. 30.

We extracted part-of-speech and dependency relations to serve as
classical linguistic features. These features were annotated using the
en_core_web_lg (v2.3.1) model from spaCy (v2.3.7146). For each TR, we
created a binary feature vector across all parts-of-speech/dependency
relations, indicatingwhether or not a given part-of-speech/dependency
relation appeared within that TR. Part of speech (e.g., noun, verb,
adjective) describes the function of each word in a sentence. We used
14 part-of-speech labels: pronoun, verb, noun, determiner, auxiliary,
adposition, adverb, coordinating conjunction, adjective, particle,
proper noun, subordinating conjunction, numeral, and interjection
(Table S4). A dependency relation describes the syntactic relation
between two words. For each word, a parser defines another word in
the same sentence, called the “head,” to which the word is syntactically
related; the dependency relation describes the way the word is related
to its head. We used 25 dependency relations: nsubj, ROOT, advmod,
prep, det, pobj, aux, dobj, cc, ccomp, amod, compound, acomp, poss,
xcomp, conj, relcl, attr, mark, npadvmod, advcl, neg, prt, nummod, and
intj (Table S5; https://github.com/clir/clearnlp-guidelines/blob/master/
md/specifications/dependency_labels.md). For visualization, we focus
on 12 dependencies with particularly high correspondence to parti-
cular heads reported by Clark and colleagues56.

We alsoused amodern combinatory categorial grammar (CCG) to
capture symbolic syntactic operations in sentence processing79. CCGs
are incremental parsers that explicitly model syntactic structure, but
with more human-like expressiveness than widely-used context-free
grammars (CFGs). We used code and examples provided by Stanojević
and colleagues (https://github.com/stanojevic/ccgtools) to parse the
transcript of the “I Knew You Were Black” stimulus and extract their
metric of parsing effort. We extracted the scalar parsing effort metric
for right-branching, left-branching, and left-branching-with-revealing
operations, resulting in three effort scores for each word in the

transcript. We summed each score across words within a given TR to
downsample the word-level effort scores to the temporal resolution of
the fMRI acquisition.

Finally, to serve as a baseline for Transformer-based language
models, we used GloVe vectors37, which capture the “static” semantic
content of a word across contexts. Conceptually, GloVe vectors are
similar to the vector representations of text input to BERT prior to any
contextualization applied by the Transformer architecture. We
obtained GloVe vectors for eachword using the en_core_web_lgmodel
from spaCy, and averaged vectors for multiple words occurring within
a TR to obtain a single vector per TR.

Transformer self-attention mechanism
While language models such as GloVe37 assign a single “global” or
“static” embedding (i.e., meaning) to a given word across all contexts,
the Transformer architecture32 introduced the self-attention mechan-
ism, which yields context-specific representations. Just as convolu-
tional neural nets93,147 use convolutional filters to encode spatial
inductive biases, Transformers use self-attention blocks as a sophisti-
cated computationalmotif or “circuit” that is repeated bothwithin and
across layers. Self-attention represents a significant architectural shift
from the sequential processing of language via recurrent
connections34 to simultaneously processing multiple tokens. Varia-
tions on the Transformer architecture with different dimensionality
and training objectives currently dominate major tasks in NLP, with
BERT33 and GPT31 being two of the most prominent examples.

There is an ongoing debate as to whether autoregressive trans-
formers (e.g., GPT31,148) or bidirectional transformers (e.g., BERT33) are
more appropriate models for predicting brain activity116. In this work,
we chose BERT as a more plausible model for narrative comprehen-
sion. This is because BERT’s “bidirectional” attention allows laterwords
in a sentence to affect the meaning of earlier words, whereas GPT’s
“causal” attention does not. To understand the implications, consider
the example shown in Fig. 1 above, containing the words “the secret
plan.” GPT is autoregressive, using a “causal” (rather than “bidirec-
tional”) attention mechanism. This means that information can only
flow forwards in time: the representation of “plan” can be updated
based on “secret”, but the representation of “secret” cannot be retro-
actively updated based on “plan.” In contrast, BERT allows bidirec-
tional attentionwithin the contextwindow, so the twowords canaffect
each others’ representations. Humans clearly can and do operate
bidirectionally: we are able to update our representation of earlier
words based on later ones (e.g., cataphora149). Given our focus on the
contextualization process itself (i.e., transformation vectors), we chose
BERT as the more realistic model; however, we replicate our key
findings in GPT-2 to showcase the generalizability of our approach.

Self-attention operates as follows. A single attention head consists
of three separate (learned)matrices: a querymatrix, a keymatrix, and a
value matrix, each of dimensionality dmodel × dhead, where dmodel indi-
cates the dimensionality of the model’s embedding layers, and dhead
indicates the dimensionality of the attention head. Input word vectors
are multiplied by each of these three matrices independently, produ-
cing a query, key, and value vector for each word. To determine the
contextualized representation for a given word vector, the self-
attention operation takes the dot product of that word’s query vec-
tor with the key vector from all words. The resulting values are then
scaled and softmaxed, producing the “attention weights” for
that word.

Formally, for a Transformer head of dimensionality dhead and sets
of query, key, and value vectors forming matrices Q, K, V, the self-
attention mechanism operates as follows:

AttentionðQ,K,VÞ= sof tmaxð Q ×K
ffiffiffiffiffiffiffiffiffiffiffi

dhead

p ÞV ð1Þ
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The ith token “attends” to tokens based on the inner product of its
query vector Qi with the key vectors for all tokens, K. When the query
vectormatches agiven key, the inner productwill be large; the softmax
ensures the resulting “attention weights” sum to one. These attention
weights are then used to generate aweighted sumof the value vectors,
V, which is the final output of the self-attention operation (Eq. 1). We
refer to the attention head’s output as the “transformation” produced
by that head. Each attention head produces a separate transformation
for each input token.

State-of-the-art Transformer architectures scale up the core self-
attention mechanism described above in two ways. First, multiple
attention heads are assembled in parallel within a given layer (“multi-
headed attention”). For example, BERT-base-uncased33, used inmost of
our analyses, contains 12 attentionheads in each layer. The 12 attention
heads are each 64-dimensional and act in parallel to produce inde-
pendent 64-dimensional “transformation” vectors. These vectors are
concatenated to produce a single 768-dimensional vector which is
then passed to the feed-forward module. Second, BERT base consists
of 12 identical layers stacked on top of each other, allowing the model
to learn a hierarchy of transformations for increasingly complex
contextualization55. The full model has 12 layers × 12 heads = 144 total
attention heads and a total of 110 million learned parameters. The
original input vectors are analogous to the static GloVe vectors; how-
ever, as they pass through successive layers in the model, repeated
applications of the self-attention mechanism allow their meanings to
contextualize each other.

The phenomenal success of Transformer-based models has gen-
erated an entire sub-field of NLP research, dubbed “BERTology,”
dedicated to reverse-engineering their internal representations42,58.
Researchers have linked different aspects of the model to classic NLP
concepts, including functional specialization of individual “attention
heads” to syntactic dependencies56, representational subspaces cor-
responding to parse trees74, and an overall layerwise progression of
representations that parallels traditional linguistic pipelines55. Our
approach builds on this work, using internal Transformer features as a
bridge from these classical linguistic concepts to brain data.

Transformer-based features
We used three separate components from the Transformer models to
predict brain activity. The first features we extract are the layerwise
“embeddings,” which are the de facto Transformer feature used for
most applications, including prior work in neuroscience78. The
embeddings represent the contextualized semantic content, with
information accumulating across successive layers as the Transformer
blocks extract increasingly nuanced relationships between tokens55. As
a result, embeddings have been characterized as a “residual stream”

that the attention blocks at each layer “write” to and “read” from. Later
layers often represent a superset of information available in earlier
layers, while the final layers are optimized to the specific pretraining
task. Prior work using such models typically finds that the mid-to-late
layers best predict brain activity78,80.

The second set of features we extract are the headwise “trans-
formations” (Eq. 1), which capture the contextual information intro-
duced by a particular head into the residual stream prior to the
feedforward layer (MLP). These features are the unique component of
the transformer responsible for propagating information between
different tokens (see ref. 77). Consequently, the transformations play a
privileged role in constructing meaning from the intricate relation-
ships between words: any contextual information that passes into a
singleword’s representation is incorporatedbywayof transformations
computed at some head150. In other words, it is simultaneously the
earliest dense representation to result from the attention operation at
a given layer (unlike the sparse attentionmatrices themselves) and the
final head-wise representation (unlike MLP activations, which operate
on the full residual stream after eachhead’s transformations have been

concatenated back together). While the transformations represent the
most crucial component of the self-attention mechanism, to our
knowledge, they have not been previously studied in human
neuroscience.

Intuitively, it may seem as if the transformations are to some
extent redundant with the embedding at the previous layer, or the
resulting embedding passed to the subsequent layer. The transfor-
mations in layer x are not computed from the embedding at layer x−1 in
a straightforward way. Rather, the transformations at layer x are the
result of the interplay between the key-query-value (k-q-v) vectors,
which are themselves a function of the embedding at layer x−1. The
learned weights at each attention head specify a projection from the
embedding at layer x−1 to a set of k-q-v components, which in turn
determine a nonlinear function for pulling in and combining con-
textual information from other tokens. Thus, although the resulting
transformations at layer x share the same dimensionality with the
embedding at x−1, they encode fundamentally different kinds of
information.

The embedding is cumulative—it carries both the original
semantic content from layer 0 (the initial token embedding), as well as
a linear combination of contextual information incorporated by
transformations at prior layers. The transformations can instead be
thought of as encoding context-appropriate “adjustments” or “diffs”.
These adjustments are added linearly into the embedding passed
along from the previous layer, effectively sculpting the embedding to
respect the context. In fact, the embedding at layer x−1 can pass
through the attention heads largely unchanged via the so-called
“residual stream”; themodel learnswhen andhoweach transformation
should adjust the embedding-based on context77.

These adjustments are added to the embedding, effectively
sculpting the embedding to respect the context. The transformations
arenotnatively “aligned”with the embedding; they arepassed through
another nonlinear transformation—the MLP—that translates the
transformations into the embedding space in order to add them to the
embedding at layer x. This step effectively fuses the contextual infor-
mation derived fromother wordswith the content of the current word
embedding. Thus, the adjustments implemented by the transforma-
tions are ostensibly “contained” in the new embedding at layer x, but
they are nonlinearly fused with the content of the previous layer.

Finally, the third set of features we extract is the “transformation
magnitudes,” which are the L2 norm of each attention head’s trans-
formation. This is effectively a “univariate”metric for how active each
attention head was: how much its update “moved” the word repre-
sentation, without any information about the direction of its influence.
Because the transformation magnitudes lack direction, they cannot
encode any semantic information: it is not possible to discern how a
word’s meaning was changed, only how much it was changed. Prior
work has shown that individual attention heads learn to implement
particular syntactic relationships56; therefore, the transformation
magnitudes provide information about the relationships between
tokens in the TR divorced from the semantic content of the TR. These
transformation magnitudes may correlate with low-level features if
particular word roles tend to be distributed at specific positions in
natural speech. We found that the time series of transformation
magnitudes are strongly correlated (r ≈0.8) with word rate and pho-
neme rate in our spoken story stimuli. Note, however, thatwhen fitting
the encoding models for transformation magnitudes (and other fea-
ture sets), we included word rate and phoneme rate (as well as pho-
neme indicators) as confound variables in a separate band (to ensure
they receive their own optimal hyperparameter). Interestingly, we also
found that the transformation magnitudes are related to part of
speech: we used least squares regression to predict the time series of
transformation magnitudes at each TR from the 14-dimensional part-
of-speech indicator time series, resulting in a moderate out-of-sample
correlation of r ≈0.4.
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Transformermodels were accessed via the HuggingFace library151.
We used the BERT-base-uncased model. We generated “embeddings”
and “transformations” as follows. For each TR, we concatenated words
assigned to that TR (3.75 words on average) together with words from
the preceding 20 TRs. We chose 20 TRs as it corresponds to the pre-
ceding 30 s of the auditory story stimulus, averaging around 100
Transformer tokens. The majority of BERT’s training occurred on
sequences of 128 tokens, so this ensured that BERT was exposed to
sequence lengths that were similar to its training distribution. We
passed the resulting set of words through the Transformer tokenizer
and then model. This procedure allowed information from the pre-
ceding time window to “contextualize” the meaning of the words
occurring in the present TR. At each layer, we extracted the “trans-
formations” (output of the self-attention submodule, Eq. 1) and the
“embeddings” (output of the final feedforward layer) for only the
words in that TR. We excluded the automatically appended “SEP”
token. For each TR, this left us with a tensor of dimension
nlayers × dmodel × ntokens, where nlayers indicates the number of layers in
the Transformer model, dmodel indicates the dimensionality of
the model’s embedding layers, and ntokens the number of tokens spo-
ken in that TR. For BERT, this resulted in a 12 layer × 768
dimension × ntokens tensor. We omit the original static BERT embed-
dings (which are sometimes termed “Layer 0”) and compare BERT
layers 1–12 to the 12 transformation layers. To reduce this to a con-
sistent dimensionality, we averaged over the tokens occurring within
each TR, resulting in a 12 × 768 × 1 tensor for each TR. TRs with no
words were assigned zeros. Finally, to generate “transformation mag-
nitudes” for eachTR,we averaged the “transformation” vectors over all
tokens in the TR, then computed the L2 norm of each attention head’s
transformation vector.

To generate the “backward attention”metric (Fig. 4), we followed
a procedure similar to the “attention distance” measure152. Unlike the
previous analyses, this required a fixed number of Transformer tokens
per TR. Rather than using the preceding 20 TRs, we first encoded the
entire story using the Transformer tokenizer, and for each TR selected
the 128 tokens preceding the end of the TR. This corresponded to
~30 seconds of the auditory story stimulus. We processed each TR and
extracted each head’s matrix of token-to-token attention weights
(Eq. 1). We selected the token-to-token attention weights corre-
sponding to information flow from earlier words in the stimulus into
tokens in the present TR (excluding the special [SEP] token). We
multiplied each token-to-token attention weight by the distance
between the two tokens, and divided by the number of tokens in the
TR to obtain the per-head attention distance in that TR. Finally, we
averaged thismetric over all TRs in the stimulus to obtain the headwise
attention distances. Note that by focusing on backward attention dis-
tances for the transformations implemented by individual attention
heads, we may underestimate attention distances that effectively
accumulate over layers71.

Decoding dependency relations
In addition to using the linguistic features to predict brain activity, we
used the “transformation” representations to predict dependencies.
For each TR, the “transformation” consists of a nlayers × dmodel tensor;
for BERT, this yields a 12 layers × 768 dimension tensor. Each of the
layers is thus a 768-dimensional vector, which itself consists of 12
concatenated 64-dimensional vectors, each corresponding to the
output of a single attention head. These 64-dimensional headwise
vectors were used as predictors. Note that this decomposition is only
valid for transformations, which are the direct results of themulti-head
attention mechanism; due to the feedforward layer after the multi-
head attention mechanism, there is no trivial way to disassemble
embeddings into headwise representations.

We used spaCy to annotate each word with a dependency label
indicating whether the word is a child for the given dependency in a

parse tree. For the dependency to be labeled as present, only the child
in the dependency relationship has to be in the given TR. If any word
occurring within a TR was labeled as a child in the dependency rela-
tionship, that TR was labeled as having the dependency present. We
trained a separate decoder for each dependency to predict whether a
dependency is present or not for eachTR. Ifmultiple dependencies co-
occur within a TR, the separate classifiers for each dependency will
each receive “present” labels for the corresponding dependency.

We performed logistic regression with the L2 penalty (imple-
mented using scikit-learn153) to predict the occurrences of each binary
dependency relation over the course of each story from the headwise
transformations. The regularization hyperparameter was determined
for each head and each dependency relation using nested five-fold
cross-validation over a log-scale grid with 11 values ranging from 10−30

to 1030. Since some dependency relations are relatively rare, labels are
imbalanced. We corrected for this imbalance by weighting samples
according to the inverse frequency of occurrence during training and
by using balanced accuracy for evaluation154.

Encoding model estimation and evaluation
Encoding models were estimated using banded ridge regression with
three-fold cross-validation69. Ridge regression is a formulation of reg-
ularized linear regression using a penalty term to ensure that the
learned coefficients minimize the squared L2 norm of the model
parameters. This effectively imposes a multivariate normal prior with
zero mean and spherical covariance on the model parameters155.
Relative to ordinary least squares, ridge regression tends to better
accommodate collinear parameters and better generalize to unseen
data (by reducing overfitting). In banded ridge regression, the full
model is composed of several concatenated submodels, including
both features of interest (e.g., BERT features) and confound variables.
The following confoundvariableswere includedbasedonpriorwork30:
phoneme and word rate per TR, a 32-dimensional phoneme indicator
matrix, and an indicator vector indicating silent TRs. Each of these
submodels was assigned to a separate “band” in the banded ridge
regression and thus received a different regularization parameter
when fitting the full model. Specifically, we have separate bands for:
themainmodel (e.g., BERT features), the silence indicator vector,word
count and phoneme count vectors, and the phoneme indicatormatrix.
Columns of the predictor matrix were z-scored across TRs based on
the mean and standard deviation of the training set. When evaluating
the model, we generate predictions using only the main model band,
discarding any confound features. For each band, we duplicated and
horizontally stacked the feature space four times, comprising lags of 1,
2, 3, and 4 TRs (1.5, 3.0, 4.5, 6.0 s) in order to account for parcelwise
variation in hemodynamic lag30. The regularization parameters were
selected via a random search with 100 iterations. In each iteration, we
sample regularization parameters for each band uniformly from the
simplex by sampling from a dirichlet distribution (as implemented in
the himalaya package69). We performed nested three-fold cross-vali-
dation within each training set of the outer cross-validation partition.
Encoding models were fit for each of the 1,000 parcels within each
subject and each story dataset. The cross-validation procedure was
implemented so as to partition the time series into temporally con-
tiguous segments. When conducting the headwise encoding analyses
(Fig. 5), we also discard the learned coefficients corresponding to all
heads except for the particular head of interest for prediction and
evaluation on the test set156.

Encoding model performance was evaluated by computing the
Pearson correlation between the predicted and actual time series for
the test partition. Correlationwasused as the evaluationmetric in both
the nested cross-validation loop for regularization hyperparameter
optimization, and in the outer cross-validation loop. For each partition
of the outer cross-validation loop, the regularization parameter with
the highest correlation from the nested cross-validation loop within
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the training set was selected. This procedure yields a correlation value
for each test set of the outer cross-validation loop for each parcel and
subject. These correlation values were then averaged across cross-
validation folds, and Fisher-z transformed prior to statistical
assessment.

Noise ceiling estimation
The raw correlation values described above depend on the signal-to-
noise ratio (SNR), duration, and other particular features of the data. In
order to provide a more interpretable metric of model performance,
we compute the proportion of the correlation value relative to a noise
ceiling—effectively, the proportion of explained variance relative to
the total variance available. Acquiring replicates of brain responses to
the same stimulus in the same subjects is effectively impossible under
naturalistic contexts due to repetition effects; i.e., listening to a nar-
rative for a second time does not engage the same cognitive processes
as listening to the narrative for the first time157. To circumvent this
challenge, we used ISC as an estimate of the noise ceiling70,158. In this
approach, time series from all subjects are averaged to derive a sur-
rogatemodel intended to represent the upper limit of potential model
performance. For each subject, the test time series for each outer
cross-validation fold is first averaged with the test time series of all
other subjects in thedataset, then the test time series for that subject is
correlated with the average time series. Including each subject in the
average biases the noise ceiling upward, thus yielding more con-
servative estimates of the proportion. Note that under circumstances
where individual subjects are expected to vary considerably in their
functional architecture, ISC may provide a suboptimal noise ceiling.
However, in the current context, we do not hypothesize or model any
such differences.

Statistical assessment
In all cases, parcelwise encoding models were estimated and eval-
uated within individual subjects. However, for statistical evaluation,
we aggregate the model performance scores (correlation between
predicted and actual test time series) derived from the subject-
specific models across subjects. This approach is in contrast to “low
N” studies (e.g.30, N = 7), which similarly fit models within each sub-
ject, but statistically evaluate each subject separately. In our
approach, fine-grained differences in cortical topographies for lan-
guage across individual brains may be obscured by aggregating
parcelwise results across subjects68,112. We compromised on these
fronts for three reasons. First, in contrast to dense-sampling, low N
datasets (e.g.159), the Narratives dataset comprises larger samples of
subjects (e.g., N = 45 for the “I Knew You Were Black” story) exposed
to fewer spoken story stimuli. Second, we estimated parcelwise
encoding models based on the 1000-parcel atlas by Schaefer and
colleagues67 to reduce computational demands across numerous
models tested; we suspect that this spatial downsampling, while
reducing the specificity of the encodingmodels to some degree, may
also provide coarse-grained alignment when aggregating within-
subject model performance scores across subjects. Third, we do not
have repeated exposures to the same test set (e.g.30), and therefore
estimate a between-subjects noise ceiling based on ISC70. We
acknowledge that finer-grained encoding may be possible by aggre-
gating across subjects in a more sophisticated way (e.g., using
hyperalignment20,21,160).

To assess the statistical significance of encoding model perfor-
mance, we used two nonparametric randomization tests. First, when
testing whether model performance was significantly greater than
zero, we used a one-sample bootstrap hypothesis test161. For each
iteration of the bootstrap, we randomly sampled subject-level cor-
relation values (averaged across cross-validation folds), then com-
puted the Fisher-transformed mean across the bootstrap sample of
subjects to construct a bootstrap distribution around the mean

model performance value across subjects for each parcel. We then
subtracted the observed mean performance value from this boot-
strap distribution, thus shifting the mean roughly to zero (the null
hypothesis). Finally, we computed a one-sided p value by determin-
ing how many samples from the shifted bootstrap distribution
exceeded the observed mean.

Second, when comparing performance between two models, we
used a permutation test. For each iteration of the permutation test, we
took the subject-wise differences in performance between the two
models, randomly flipped their signs, then recomputed the mean dif-
ference in correlation across subjects to populate a null distribution.
We then computed a two-sided p value by determining how many
samples from either tail of the distribution exceeded the mean
observed difference.

Statistical tests for population inference were performed by
concatenating subjects across story datasets prior to randomization in
order to produce one p value across stories; however, randomization
was stratifiedwithin each story.When assessing p values across parcels
or ROIs, we corrected for multiple tests by controlling the false dis-
covery rate (FDR) at q <0.05162.

Summarizing headwise transformation weights
To summarize the contribution of headwise transformations across
the language network, we first obtained the regression coefficients—
i.e., weightmatrices—from the encodingmodel trained topredictbrain
activity from the BERT transformations concatenated across layers
(Fig. 1, red; corresponding to the performance in Fig. 2, red). To
account for the fact that the learnedweightsmay be ondifferent scales
at different parcels (due to different regularization parameters), we
first z scored the weight vectors for each parcel prior to subsequent
analysis. We then averaged the parcelwise weight vectors across both
subjects and stimuli. We next computed the L2 norm of the regression
coefficients within each head at each layer, summarizing the con-
tribution of the transformation at each head for each parcel. Following
Huth and colleagues30,163, we then used PCA to summarize these
headwise transformation weights across all parcels in the language
ROIs. This yields a reduced-dimension brain space where each data
point corresponds to the transformation implemented by each of the
144 attention heads. To visualize the structure of these headwise
transformations in the reduced-dimension brain space, we colored the
data points according to the structural and functional properties of the
heads, including their layer, backward attention distance, and depen-
dency prediction scores.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MRI data used in this study are openly available as part of the
“Narratives”dataset137, publicly available via theOpenNeuro repository
at https://doi.org/10.18112/openneuro.ds002345.v1.1.4, and via Data-
Lad at https://datasets.datalad.org/?dir=/labs/hasson/narratives. The
Schaefer atlas was obtained from the associated GitHub repository:
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/brain_parcellation/Schaefer2018_LocalGlobal. The language
ROIs were obtained from Fedorenko and colleagues: https://evlab.mit.
edu/funcloc/. The Harvard-Oxford atlas was obtained from FSL:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases. Source data are provided
with this paper.

Code availability
Code used to analyze the data is publicly available at the accom-
panying GitHub repository: https://github.com/tsumers/bert-brains
(https://doi.org/10.5281/zenodo.10863840).
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