
Article https://doi.org/10.1038/s41467-024-46631-y

Alignment of brain embeddings and artificial
contextual embeddings in natural language
points to common geometric patterns

Ariel Goldstein 1,2 , Avigail Grinstein-Dabush2,8, Mariano Schain2,8,
Haocheng Wang3, Zhuoqiao Hong3, Bobbi Aubrey3,4, Mariano Schain2,
Samuel A. Nastase 3, Zaid Zada 3, Eric Ham3, Amir Feder2,
Harshvardhan Gazula3, Eliav Buchnik2, Werner Doyle4, Sasha Devore4,
Patricia Dugan4, Roi Reichart5, Daniel Friedman4, Michael Brenner2,6,
Avinatan Hassidim2, Orrin Devinsky 4, Adeen Flinker 4,7 & Uri Hasson 2,3

Contextual embeddings, derived from deep languagemodels (DLMs), provide
a continuous vectorial representation of language. This embedding space
differs fundamentally from the symbolic representations posited by tradi-
tional psycholinguistics. We hypothesize that language areas in the human
brain, similar to DLMs, rely on a continuous embedding space to represent
language. To test this hypothesis, we densely record the neural activity pat-
terns in the inferior frontal gyrus (IFG) of three participants using dense
intracranial arrays while they listened to a 30-minute podcast. From these fine-
grained spatiotemporal neural recordings, we derive a continuous vectorial
representation for each word (i.e., a brain embedding) in each patient. Using
stringent zero-shotmappingwedemonstrate that brain embeddings in the IFG
and the DLM contextual embedding space have common geometric patterns.
The common geometric patterns allow us to predict the brain embedding in
IFG of a given left-out word based solely on its geometrical relationship to
other non-overlapping words in the podcast. Furthermore, we show that
contextual embeddings capture the geometry of IFG embeddings better than
static word embeddings. The continuous brain embedding space exposes a
vector-based neural code for natural language processing in the human brain.

Deep language models (DLMs) trained on massive corpora of natural
text provide a radically different framework for how language is
represented in the brain. The recent success of DLMs in modeling
natural language can be traced to the gradual development of three
foundational ideas in computational linguistics.

The first key innovation was to (1) embed words in continuous
vector space: Traditionally, words in language were viewed as discrete
symbolic units in a lexicon1,2. Early work in distributional semantics
demonstrated that the meaning of words could instead be captured
by geometric relationships in a continuous vector space based on
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co-occurrence statistics in large corporaof text3.More recentmodels—
for example, GloVe4—factorize co-occurrence matrices into a seman-
tically rich embedding space. This vector-space representation of lin-
guistic structure would prove to be a core component of DLMs. The
second key innovation was to (2) use self-supervised neural networks
to embed the statistical structure of natural language: Rather than
curating an embedding space from a precalculated co-occurrence
matrix or using easily-interpretable, hand-crafted features, researchers
are leveraging the power of self-supervised neural networks to learn
the embedding space directly from natural language. For example, the
neural network model word2vec5 embeds a complex semantic struc-
ture in the embedding space based on a simple self-supervised
objective combined with nonlinear transformations between layers.
The scalability of this approach would prove to be transformative for
DLMs. The third key innovation was to (3) leverage the local relation-
ships among words to contextualize the embedding space: The pre-
vious generation of models, such as GloVe and word2vec, assign a
single static embedding to each word capturing the global meaning of
that word across all contexts. This approach, however, does not do
justice to the subtle, context-sensitive dependencies across words in
natural language. DLMs—like GPT-26—have capitalized on the trans-
former architecture7 to assign each word in a text a unique, context-
sensitive meaning based on the surrounding words within a given
contextwindow. The contextual embeddings learnedbyDLMs capture
subtle statistical dependencies reflecting syntactic, semantic, and
pragmatic relationships among words8–10. The synthesis of these three
innovations—using self-supervised deep learning to encode the
context-sensitive statistical structure of natural language in a con-
tinuous embedding space—has culminated in full-fledged language
models capable of generating novel sentences with human-like,
context-sensitive linguistic structure.

Similar computational principles were found essential for under-
standing the neural basis of language processing in the human brain.
The first key principle was to shift toward (1) distributed, vector-space
neural codes: Traditionally, neuroscience was focused on under-
standing the functional properties of single neurons and individual
brain areas. In the last decades, there has been a gradual shift toward
distributed, vector-space representation, such as neural population
codes11–14, multivoxel pattern analysis15–17, and representational
geometry18–20. Interestingly, early examples of this work11 roughly
coincide with developing fundamental ideas about distributed repre-
sentation in neural networks21. Groundbreaking work by Mitchell and
colleagues22 begins to synthesize these parallel developments by using
co-occurrence-based semantic vectors (similar to GloVe embeddings)
to predict multivoxel patterns of brain activity associated with single
words (see also 23,24). The second key principle emerged with the
adoption of (2) deep statistical-learning models as a computational
framework for how the brain processes natural stimuli: Researchers
began tomove away from simplistic experimental paradigms tomodel
the multidimensional neural responses in real-life contexts25,26, posi-
tioning deep neural networks as a computational framework for neural
processing of naturalistic visual and auditory stimuli27–33. The exten-
sion of this approach to language coincideswith the third key principle
of (3) using contextual embeddings to understand context-sensitive
language processing in the brain: With the recent development of
context-sensitive DLMs, we see an explosion of work demonstrating
that contextual embeddings better predict brain activity than static
embeddings34–41. These developments have revealed several compu-
tational principles the brain shares with DLMs: the brain incorporates
prior context into the meaning of individual words34,38,40, sponta-
neously predicts forthcoming words40,42, and computes post-word-
onset prediction error signals40,43.

We provide two pieces of evidence to support this shift from a
rule-based symbolic framework to a vector-based neural code for
processing natural language in the human brain. First, we demonstrate

that the patterns of neural responses (i.e., brain embeddings) for single
wordswithin a high-level language area, the inferior frontal gyrus (IFG),
capture the statistical structure of natural language. Using a dense
array of micro- and macro-electrodes, we sampled neural activity
patterns at a fine spatiotemporal scale that has been largely inacces-
sible to prior work relying on fMRI and EEG/MEG. This allows us to
directly compare the representational geometries of IFG brain
embeddings and DLM contextual embeddings with unprecedented
precision. A common definition of ‘geometry’ is a branch of mathe-
matics that deals with shape, size, the relative position of figures, and
the properties of shapes44. This and other work in cognitive compu-
tational neuroscience rely on a long history of work in psychology,
neuroscience, and machine learning to characterize the geometric
relationships among vector-based representations in a multi-
dimensional space; for example, the geometric relationships among
stimuli in an internal psychological space45–47; the geometric relation-
ships among patterns of brain activity11,17,18; and the geometric rela-
tionships among embeddings in a neural network21,29.

Second, one of the core commitments emerging from these
developments is that DLMs and the human brain have common geo-
metric patterns for embedding the statistical structure of natural
language32. But how precise is this mapping? In the current work, we
build on the zero-shot mapping strategy developed by Mitchell and
colleagues22 to demonstrate that the brain represents words using a
continuous (non-discrete) contextual-embedding space. Unlike dis-
crete symbols, in a continuous representational space, there is a gra-
dual transition among word embeddings, which allows for
generalization via interpolation among concepts. Using the zero-shot
analysis, we can predict (interpolate) the brain embedding of left-out
words in IFG based solely on their geometric relationships to other
words in the story. We also find that DLM contextual embeddings allow
us to triangulate brain embeddings more precisely than static, non-
contextual word embeddings similar to those used by Mitchell and
colleagues22. Together, these findings reveal a neural population code
in IFG for embedding the contextual structure of natural language.

Results
Using a dense array of electrocorticographic (ECoG) micro-and macro-
electrodes, we recorded neural activity in the IFG of three epileptic
participants while they listened to a 30-min audio podcast (seeMaterials
and Methods). We focus on IFG as it has been positioned as a central
hub for language processing, emphasizing semantic and syntactic
processing40,48–53. Overall, we had a dense sampling of 81 intracranial
electrodes in IFG, with 41, 14, and 26 electrodes in participants 1–3,
respectively (Fig. 1A). The ECoG recordings provide a measure of the
neural activity patterns for each word in the IFG. These activity patterns
correspond to a local brain embedding for eachword, where the activity
of each electrode serves as a feature (i.e., dimension) in the IFG
embedding space (Fig. 1D, left). Across all participants, we extracted an
81-dimensional brain embedding vector for each word in the story. The
brain embeddings were sampled across all electrodes in IFG and iden-
tified anatomically during surgery without imposing any additional
selection criteria. To assess the selectivity of the results, we also sam-
pled activity from two anatomically adjacent brain regions containing a
similar density of electrodes but not thought to be directly involved in
language comprehension: the precentral gyrus and the post-
central gyrus.

We used zero-shot mapping, a stringent generalization test, to
demonstrate that IFG brain embeddings have common geometric
patterns with contextual embeddings derived from a high-performing
DLM (GPT-2). The zero-shot analysis imposes a strict separation
between the words used for aligning the brain embeddings and con-
textual embeddings (Fig. 1D, blue) and the words used for evaluating
the mapping (Fig. 1D, red). We randomly chose one instance of
each unique word (type) in the podcast, resulting in 1100 words
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Fig. 1 | Zero-shot encoding and decoding analysis. A Dense coverage of the
inferior frontal gyrus (IFG). Using the Desikan atlas69 we identified electrodes in the
left IFG andprecentral gyrus (pCG).BThedense sampling of activity in the adjacent
pCG is used as a control area. C We randomly chose one instance for each unique
word in the podcast (each blue line represents aword from the training set, and red
lines represent words from the test set). This resulted in 1100 unique words, which
we split into ten folds. Nine folds were used for training (blue), and one fold con-
taining 110 unique, nonoverlapping words was used for testing (red). D left- We
extracted the contextual embeddings fromGPT-2 for each of thewords. Using PCA,
we reduced the contextual embeddings to 50 features. Right- We used the dense
sampling of activity patterns across electrodes in IFG to estimate a brain embed-
ding for each of the 1100 words. The brain embeddings were extracted for each
participant and across participants. Center-We used nine training folds to estimate
a model (e.g., using linear regression in the case of the encoding analysis),

effectively aligning the GPT-2 contextual embeddings and the brain embeddings
(multi-electrode activity) for each word in the training set. We then evaluate the
quality of this alignment by predicting embeddings for test words not used in
fitting the regression model; successful prediction is possible if there exists some
common geometric patterns. Tfhe solid blue arrow denotes the alignment phase in
which we align the contextual embeddings to the brain embeddings based on the
training words; the solid red arrow denotes the evaluation phase of the encoding
analysis, where we predict brain embeddings for novel words from the contextual
embeddings. The dotted blue arrow denotes the alignment procedure of the
decoding analysis, in which we align the brain embeddings to the contextual
embeddings based on the training words; the dotted red arrow denotes the eva-
luation phase of the decoding analysis, where we predict contextual embeddings
for novel words from the brain embeddings.
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(Fig. 1C). As an illustration, in case the word “monkey” is mentioned 50
times in the narrative, we only selected one of these instances (tokens)
at random for the analysis. Each of those 1100 unique words is
represented by a 1600-dimensional contextual embedding extracted
from the final layer of GPT-2. The contextual embeddings were
reduced to 50-dimensional vectors using PCA (Materials and Meth-
ods). We then divided these 1100 words’ instances into ten contiguous
folds, with 110 unique words in each fold. Crucially, there was no
overlap between the words in each fold. As an illustration, the chosen
instance of the word “monkey” can appear in only one of the ten folds.
We used nine folds to align the brain embeddings derived from IFG
with the 50-dimensional contextual embeddings derived from GPT-2
(Fig. 1D, blue words). The alignment between the contextual and brain
embeddings was done separately for each lag (at 200ms resolution;
seeMaterials andMethods) within an 8-secondwindow (4 s before and
4 s after the onset of each word, where lag 0 is word onset). The
remaining words in the nonoverlapping test fold were used to evaluate
the zero-shot mapping (Fig. 1D, red words). Zero-shot encoding tests
the ability of the model to interpolate (or predict) IFG’s unseen brain
embeddings from GPT-2’s contextual embeddings. Zero-shot decod-
ing reverses the procedure and tests the ability of the model to
interpolate (or predict) unseen contextual embedding of GPT-2 from
IFG’s brain embeddings.

Zero-shot encoding
In the zero-shot encoding analysis, we use the geometry of the
embedding space to predict (interpolate) the neural responses of
unique words not seen during training. Specifically, we used nine folds
of the data (990 unique words) to learn a linear transformation
between the contextual embeddings from GPT-2 and the brain
embeddings in IFG. Next, we used the tenth fold to predict (inter-
polate) IFG brain embeddings for a new set of 110 unique words to
which the encodingmodel was never exposed. The test fold was taken
from a contiguous time section and the training folds were either fully
contiguous (for the first and last test folds; Fig. 1C) and split into two
contiguous sections when the test folds were in themiddle. Predicting
the neural activity for unseen words forces the encodingmodel to rely
solely on geometrical relationships among words within the embed-
ding space. For example, we used the words “important”, “law”,
“judge”, “nonhuman”, etc, to align the contextual embedding space to
the brain embedding space. Using the alignment model (encoding
model), we next predicted the brain embeddings for a new set of
words “copyright”, “court”, and “monkey”, etc. Accurately predicting
IFG brain embeddings for the unseen words is viable only if the geo-
metry of the brain embedding space matches the geometry of the
contextual embedding space. If there are no common geometric pat-
terns among the brain embeddings and contextual embeddings,
learning to map one set of words cannot accurately predict the neural
activity for a new, nonoverlapping set of words.

In the zero-shot encoding analysis, we successfully predicted
brain embeddings in IFG for words not seen during training (Fig. 2A,
blue lines) using contextual embeddings extracted from GPT-2. We
correlated the predicted brain embeddings with the actual brain
embedding in the test fold.We averaged the correlations across words
in the test fold (separately for each lag). The averaged correlations of
the unseen words were significant at multiple time points surrounding
word onset for all three participants (a blue horizontal line marks the
significance threshold; for details on the significance test, seeMaterials
and Methods), with peak correlations of roughly 200ms after word
onset. Furthermore, the encoding performance for unseen words was
significant up to −700ms before word onset, which provides evidence
for the engagement of IFG in context-based next-word prediction40.
The zero-shot mapping results were robust in each individual partici-
pant and the group level (Fig. 2B-left, blue lines).

For GPT-2 embeddings, the zero-shot encoding performance was
close to zero when we randomly matched the words in the test fold
with mismatching contextual embeddings (Figs. 2A, B and S1, black
lines). Furthermore, the predicted neural activity pattern (brain
embedding) for each unseen wordwas selective to the IFG.We did not
find a statistically significant correlation between brain embedding
and contextual embedding in an adjacent control area, the precentral
gyrus (Fig. 2C, blue lines). However, using a one-sided nonparametric
permutation test, we found a significant difference between the cor-
relations in the IFG and in the precentral gyrus (p <0.001). To ensure
that the lack of zero-shotmapping in the precentral gyrus is not due to
the lower spatial sampling, we replicated the findings in individual
participants who have a comparable number of electrodes in the
precentral gyrus and IFG (Fig. S1). We combined electrodes in pre-
central and postcentral gyri to increase coverage, but we did not find
statistically significant effects of zero-shot mapping in control areas
(Fig. S2). However, using a one-sided nonparametric permutation test,
we found a significant difference between the correlations in the IFG
and in the control area (p <0.001).

Precise neural interpolation based on common geometric
patterns
The zero-shot encoding analysis suggests that the common geometric
patterns of contextual embeddings and brain embeddings in IFG is
sufficient to predict the neural activation patterns for unseen words. A
possible confound, however, is the intrinsic co-similarities among
word representations in both spaces. For example, the embedding for
the test word “monkey” may be similar to the embedding for another
word from the training set, such as “baboon” (in most contexts); it is
also likely that the activation patterns for these words in the IFG are
similar22,24.

To address this, we devised a control analysis to determine whe-
ther the zero-shot mapping can precisely predict the brain embedding
of unseen words (i.e., left-out test words) relying on the common
geometric patterns across both embedding spaces. We repeated the
zero-shot mapping analysis—however, instead of using the actual
contextual embedding for each of the unseen words in the test fold in
predicting their brain embedding, we used the contextual embedding
of the most similar word in the training set (based on the cosine
similarity of the embeddings). If the nearest word from the training set
yields similar performance, then the model predictions are not very
precise and could simply be the result of memorizing the training set.
However, if the predictionmatches the actual testwordbetter than the
nearest training word, this suggests that the prediction ismore precise
and not simply a result of memorizing the training set. For example,
instead of using the contextual embedding for “monkey” (a previously
unseen word in the test fold), we used the contextual embedding of
the most similar word in the training set (“baboon”; the similarity was
computed using the cosine-similaritymetric of theword embeddings).
If the zero-shot analysis matches the predicted brain embedding with
the nearest similar contextual embedding in the training set, switching
to the nearest training embedding will not deteriorate the results. In
contrast, if the alignment exposes common geometric patterns in the
two embedding spaces, using the embedding for the nearest training
word will significantly reduce the zero-shot encoding performance.

We observed a significant decrease in performance when using
the nearest training embeddings (Fig. 2A, B left, red line). This is evi-
dent both at the group level and in each individual participant. This
further supports the claim that alignment between the contextual and
brain embeddings revealed fine-grained common geometric patterns
between the two representational spaces (blue asterisk represents a
significant difference (p <0.01; for details, seeMaterials andMethods);
that is, the predicted embedding for a given word more closely mat-
ches that word than even the most similar word from the training set.
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To compute the contextual embedding for a given word, we
initially supplied all preceding words to GPT-2 and extracted the
activity of the last hidden layer (see Materials and Methods), ignoring
the cross-validation folds. To rule out the possibility that our results
stem from the fact that the embeddings of the words in the test fold
may inherit contextual information from the training fold, we devel-
oped an alternative way to extract contextual embeddings. To ensure

no contextual information leakage across folds, we first split the data
into ten folds (corresponding to the test sets) for cross-validation and
extracted the contextual embeddings separately within each fold.
Specifically, (a) we sampled the unique words (1–1100); (b) we split
them into contiguous folds of 110 words; (c) the first word in each fold
was the first word supplied to GPT-2 (d) the last (i.e., 110th) word in
each segment was the last word supplied to GPT-2; (e) we used these
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folds to extract embeddings. In this more strict cross-validation
scheme, the word embeddings do not contain any information from
other folds. We repeated the encoding and decoding analyses and
obtained qualitatively similar results (e.g., Figs. S3–9).We alsoexamine
an alternative way to extract the contextual word embedding by
including the word itself when extracting the embedding, the results
qualitatively replicated for these embeddings as well (Fig. S4).

Interpolation based on word embeddings versus contextual
embeddings
Inspired by Mitchell and colleagues22, we performed the exact same
zero-shot analysis using co-occurrence-based, static (GloVe) word
embeddings. Replicating their results, we could interpolate the activity
to unseen words using the geometry of the GloVe embedding (blue
line, Fig. 2B right). However, performance was significantly weaker
than for the contextual embeddings (p < 0.001; marked by green
asterisks; FDR corrected). Furthermore, there was no statistical dif-
ference between the zero-shot analysis and the nearest neighbor
control for the GloVe embeddings (Fig. 2C blue versus red lines).While
there are common geometric patterns between the static GloVe
embedding space and the IFG embeddings—sufficient for predicting
the meaning of unseen words, as demonstrated by Mitchell and col-
leagues (Fig. 2B left blue line)—the alignment is not precise enough to
interpolate the unique contextual meaning of test words better than
related words from the training set (Fig. 2B left red line and Fig. S5).

The analysis report in Fig. 2 is very conservative, as the nearest
neighbor is taken from the training set. This is a conservative analysis
because the model is estimated from the training set, so it overfits the
training set by definition. Even though it is trained on the training set,
the model prediction better matches the brain embedding of the
unseen words in the test than the nearest word from the training set.
Thus, we conclude that the contextual embeddings have common
geometric patterns with the brain embeddings. However, if we adopt
less conservative criteria, inspired by Mitchell and colleagues, where
the nearest neighbor word (i.e., not target word) was another word
from the test set (meaningwas not seen during the training set), we do
get the effect for the GloVe (and a larger effect for the contextual
embeddings; Fig. S5). We also controlled for the possibility that the
effect results frommerely including information from previous words.
For this, we curated pseudo-contextual embeddings (not induced by
GPT-2) by concatenating the GloVe embeddings of the ten previous
words to the word in the test set and replicated the analysis (Fig. S6).

Symbolic embeddings versus contextual (GPT-2-based)
embeddings
Based on our findings thus far, there appears to be a significant
alignment between contextual embedding (i.e., induced by deep lan-
guage models) and IFG’s brain embeddings which allowed us to pre-
dict better (above-nearest neighbor matching) newly-introduced
words thatwere not included in the training. Next, we tested the ability
of a symbolic-based (interpretable) model for zero-shot inference. To

transform a symbolic model into a vector representation, we utilized54

to extract 75 symbolic (binary) features for every word within the text.
These features include part of speech (POS) with 11 features, stop
word, word shape with 16 features, types of prefixes with 19 dimen-
sions, and types of suffixes with 28 dimensions. For a full list of all
feature dimensions, see Supplementary Table 1. Next, we built a 75-
dimensional (binary) vector for each word using these linguistic fea-
tures. To match the dimension of the symbolic model and the
embeddingsmodel, we PCA the symbolicmodel to 50 dimensions.We
obtained similar results with the 75d and 50d symbolic embeddings.
We next ran the exact encoding analyses (i.e., zero-shot mapping) we
ran using the contextual embeddings but using the symbolic model.
The ability of the symbolic model to predict the activity for unseen
words was greater than chance but significantly lower than contextual
(GPT-2-based) embeddings (Fig. S7A). We did not find significant evi-
dence that the symbolic embeddings generalize and better predict
newly-introduced words that were not included in the training (above-
nearest neighbor matching, red line in Fig. S7A). This means that the
symbolic model can predict the activity of a word that was not inclu-
ded in the training data, such as the noun “monkey” based on how it
responded to other nouns (like “table” and “car”) during training.
However, we did not find evidence that it is able to interpolate and
make new predictions about the representation (embedding) of a
specific left-out noun (“monkey”) when used in the context of an
unseen segment of the story, whichwe termed zero-shot inference. To
enhance the symbolicmodel, we incorporated contextual information
from the preceding three words into each vector, but adding symbolic
context did not improve the fit (Fig. S7B). Lastly, the ability to predict
above-nearest neighbor matching embedding using GPT-2 was found
significantly higher of contextual embedding than symbolic embed-
ding (Fig. S7C).

Zero-shot decoding of individual words
In the preceding zero-shot encoding analysis, we successfully mapped
the contextual embeddings into the brain embedding space of the IFG.
Next, we reversed the mapping (i.e., decoding analysis) to map the
brain embedding space into the contextual embedding space of GPT-2
(Fig. 1D). For this purpose, we used a two-step classification
procedure40. Because this analysis requires multi-label classification
(110 labels for each test fold), we trained a decoder using the same
architecture introduced in our previous paper40. First, we trained
a deep convolutional neural network to align the brain embedding of
each word in the training folds to their corresponding contextual
embedding (see Materials and Method and Supplementary Informa-
tion). Next, we used the trained neural network to predict the con-
textual embeddings for the signal associatedwith each unseenword in
the test fold. The cosine distance between the predicted and actual
contextual embeddingwas used to classify the nearest word in the 110-
word test set (i.e., zero-shot decoding). As with the encoding analysis,
we repeated this procedure separately for different temporal shifts
relative to work onset. We used the area under the receiver operating

Fig. 2 | Encoding analysis reveals common geometric patterns between con-
textual embeddings and brain embeddings. A Zero-shot encoding between the
contextual and brain embeddings in IFG for each patient. The solid blue line shows
the average correlation between the predicted and actual brain embeddings in IFG
for allwords across all test sets (all shaded lines represent standarderror above and
standard error below average). Significant correlations peak after word onset but
precede word onset (the significance threshold is marked by the horizontal blue
line). The red line shows the zero-shot encoding for the word from the training set
that is most similar (nearest neighbor) to each test word (error bands mark the
standard error across words). Note that the reduced correlations for the nearest
training embeddings indicate that the zero-shot mapping can accurately inter-
polate to new embeddings not seen during the training phase (at the level of
individual patients). The blue asterisks represent a significant difference (one-

sided, FDR corrected, q <0.01) between the correlation with the actual contextual
embeddings (blue line) and the correlation with the nearest embedding from the
training set (red line). The black line shows the zero-shot encoding between shuf-
fled contextual embeddings and the brain embeddings. B Zero-shot encoding for
brain embeddings was extracted across all participants. The green asterisks (left)
indicate significantly greater performance for GPT-2 embeddings versus GloVe
embeddings (one-sided, FDR corrected, q <0.01). All shaded lines represent stan-
dard error above and standard error below average. C Zero-shot encoding for
electrodes sampled from the anatomically adjacent control area, the precentral
gyrus. We did not find a significant correlation between brain embeddings and
contextual embeddings observed in this non-linguistic area. All shaded lines
represent standard error above and standard error below average.
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characteristic curve (ROC-AUC) to quantify the amount of information
for each word. ROC-AUC of 0.5 indicates chance performance, and
ROC-AUC of 1 indicates perfect classification among all test words.

Using zero-shot decoding, we could classify words well above-
chance (Fig. 3). Decoding performance was significant at the group
level, and we replicated the results in all three individuals. Peak clas-
sificationwasobserved at a lagof roughly 320ms afterwordonsetwith
a ROC-AUC of 0.60, 0.65, and 0.67 in individual participants and 0.70
at the group level (Fig. 3, pink line). Shuffling the labels reduced the
ROC-AUC to roughly 0.5 (chance level, Fig. 3 black lines). Running the
sameprocedureon theprecentral gyrus control area (Fig. 3, green line)
yielded anAUC closer to the chance level (maximumAUCof0.55). The
marginal classification in the precentral gyrusmay be attributed to the
anatomical proximity to the IFG, functional properties peripherally
related to language comprehension (e.g., articulation), or to the

enhanced power of nonlinear models for aligning embedding spaces.
We replicated these results on the set of fold-specific embedding (used
for Fig. S7). We also ran the analysis for a linear model with a 200ms
window, equating to the encoding analysis, and replicated the results,
albeit with a smaller effect (Fig. S8). Finally, to further substantiate the
assertion of common geometric patterns with contextual embedding,
we contrasted the performance of the decoding model based on
contextual embedding (facilitated by GPT-2) with the performance of
state-of-the-art non-contextual embedding (GloVe). The findings
clearly demonstrated a substantial enhancement in performancewhen
using contextual embedding (see Fig. S10).

Discussion
Howdoes the brain encode the contextualmeaning ofwords in natural
language? Our findings depart from the symbolic representations and

Fig. 3 | Zero-shot decoding of unseenwords after aligning brain embeddings of
the inferior frontal gyrus (IFG) and precentral gyrus to GPT-2 contextual
embeddings.Average area under the receiver operating characteristic curve (ROC-
AUC) for zero-shot word classification based on the predicted brain embeddings in
IFG (purple line) and precentral gyrus (green line). All shaded lines represent
standard error above and standard error below average. Zero-shot decoding was
performed for each individual participant using brain embeddings. The classifica-
tion is performed for all unseen words in each test fold, and performance is

averaged across all ten test folds (the error bands indicate the standard error of the
ROC-AUC scores across the folds). The classification was performed by computing
the cosine distance between each predicted embedding and all other 110 words in
the test fold. The black lines show the zero-shot classification between brain
embeddings and shuffled contextual embeddings. In purple asterisks, wemark the
significant difference, one-sided p value (p <0.001), between the averageROC-AUC
scores (n = 1100) based on the IFGand precentral embeddings, usingpaired sample
permutation and Bonferroni correction for multiple comparisons.
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rule-based syntactic operations of classical neurolinguistics. Using
dense, high-resolution ECoG recordings, we sampled words’ con-
tinuous vector representation (brain embeddings) in a natural narra-
tive within a well-localized language area, the IFG. Using zero-shot
encoding and decoding, we demonstrate that IFG relies on continuous
embeddings to represent words in natural contexts. Importantly, the
brain embedding space shares commongeometric properties with the
contextual embedding space learned by DLMs. These common geo-
metric patterns were sufficient to predict activity patterns in IFG for a
new set of words not seen during training. This demonstrates that
there is a mapping between the two spaces. Critically, the zero-shot
predictions were precise enough to predict (interpolate) the embed-
dings of novel words more accurately than the most similar word (its
nearest neighbor) in the training set. This means that the common
geometric patterns allow for more precise interpolation than can be
learned by the linear model by simply memorizing the training words.
For example, it is possible to have an above-chance in performance in
predicting the brain embedding associated with ‘monkey’ by basically
predicting the brain embedding of a word with a similar meaning that
appears in the training set (e.g., “baboon”). This would suggest that
while there are some common geometric patterns, the mapping is not
very precise. However, we showed that the predictions better match
the actual test words than the nearest training words.

The zero-shot inference demonstrates that the electrode activity
vectors predicted from the geometric embeddings closely correspond
to the activity pattern for a given word in the electrode space. While
most prior studies focused on the analyses of single electrodes, in this
study, we densely sample the population activity, of eachword, in IFG.
These distributed activity patterns can be seen as points in high-
dimensional space, where each dimension corresponds to an elec-
trode, hence the term brain embedding. Similarly, the contextual
embeddings we extract from GPT-2 for each word are numerical vec-
tors representing points in high-dimensional space. Each dimension
corresponds to one of 1600 features at a specific layer of GPT-2. GPT-2
effectively re-represents the language stimulus as a trajectory in this
high-dimensional space, capturing rich syntactic and semantic infor-
mation. The regression model used in the present encoding analyses
estimates a linear mapping from this geometric representation of the
stimulus to the electrode. However, it cannot nonlinearly alter word-
by-word geometry, as it only reweights features without reshaping the
embeddings’ geometry. Therefore, without common geometric pat-
terns between contextual and brain embeddings in IFG, we could not
predict (zero-shot inference) the brain embeddings for unseen left-out
words not seen during training.

Zero-shot inference provides a principled way for testing the
neural code for representing words in language areas. The zero-shot
procedure removes information about word frequency from the
model as it only sees a single instanceof eachwordduring training and
evaluates model performance on entirely new words not seen during
training. Therefore, themodelmust rely on the geometrical properties
of the embedding space for predicting (interpolating) the neural
responses for unseen words during the test phase. It is crucial to
highlight the uniqueness of contextual embeddings, as their sur-
rounding contexts rarely repeat themselves in dozens or even hun-
dreds of words. Nonetheless, it is noteworthy that contextual
embeddings for the same word in varying contexts exhibit a high
degree of similarity55. Most vectors for contextual variations of the
same word occupy a relatively narrow cone in the embedding space.
Hence, splitting the unique words between the train and test datasets
is imperative to ensure that the similarity of different contextual
instances of the same word does not drive encoding and decoding
performance. This approach ensures that the encoding and decoding
performance does not result from a mere combination of memoriza-
tion acquired during training and the similarity between embeddings
of the same words in different contexts.

Our results indicate that contextual embedding space better
alignswith the neural representation of words in the IFG than the static
embedding spaceused inprior studies22–24. A previous study suggested
that static word embeddings can be conceived as the average
embeddings for a word across all contexts40,56. Thus, a static word
embedding space is expected to preserve some, but not all, of the
relationships among words in natural language. This can explain why
we found significant yet weaker interpolation for static embeddings
relative to contextual embeddings. Furthermore, the reduced power
may explain why static embeddings did not pass our stringent nearest
neighbor control analysis. Together, these results suggest that the
brain embedding space within the IFG is inherently contextual40,56.
While the embeddings derived from the brain and GPT-2 have similar
geometry, they are certainly not identical. Testing additional embed-
ding spaces using the zero-shot method in future work will be needed
to explore further the neural code for representing language in IFG.

We are not suggesting that classical psycholinguistic grammatical
notions should be disregarded. In this paper, we define symbolic
models as interpretable models that blend symbolic elements (such as
nouns, verbs, adjectives, adverbs, etc.) with hard-coded rule-based
operations. On the other hand, deep language models are statistical
models that learn language from real-worlddata, oftenwithout explicit
prior knowledge about language structure. If symbolic terms encap-
sulate some aspects of linguistic structure, we anticipate statistical
learning-based models will likewise embed these structures31,32.
Indeed8,57–60, succeeded in extracting linguistic information from
contextual embeddings. However, it is important to note that although
large language models may capture soft rule-like statistical regula-
rities, this does not transform them into rule-based symbolic systems.
Deep language models rely on statistical rather than symbolic foun-
dations for linguistic representations. By analyzing language statistics,
thesemodels embed language structure into a continuous space. This
allows the geometry of the embedded space to represent the statistical
structure of natural language, including its regularities and peculiar
irregularities.

We did not find statistically significant evidence for symbolic-
based models performing zero-shot inference and delivering better
predictions (above-nearest neighbor matching), for newly-introduced
words that were not included in the training. However, the ability to
predict above-nearest neighbormatching embedding using GPT-2 was
found significantly higher in contextual embedding than in symbolic
embedding. This suggests that deep language-model-induced repre-
sentations of linguistic information are more aligned with brain
embeddings sampled from IFG than symbolic representation. This
discovery alone is not enough to settle the argument, as there may be
new symbolic-based models developed in future research to enhance
zero-shot inference while still utilizing a symbolic language
representation.

While we found evidence for common geometric patterns
between brain embeddings derived from IFG and contextual embed-
dingderived fromGPT-2, our analyses donot assess thedimensionality
of the embedding spaces61. In this work, we reduce the dimensionality
of the contextual embeddings from 1600 to 50 dimensions. We
demonstrate a common continuous-vectorial geometry between both
embedding spaces in this lower dimension. To assess the latent
dimensionality of the brain embeddings in IFG, we need a denser
sampling of the underlying neural activity and the semantic space of
natural language61.

Why are there common geometric patterns of language in DLMs
and the human brain? After all, there are fundamental differences
between the way DLMs and the human brain learn a language. For
example, DLMs are trained on massive text corpora containing mil-
lions or even billions of words. The sheer volume of data used to train
these models is equivalent to what a human would be exposed to in
thousands of years of reading and learning. Furthermore, current
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DLMs rely on the transformer architecture, which is not biologically
plausible62. Deep language models should be viewed as statistical
learning models that learn language structure by conditioning the
contextual embeddings on howhumans usewords in natural contexts.
If humans, like DLMs, learn the structure of language from processing
speech acts, then the two representational spaces should converge32,61.
Indeed, recent work has begun to show how implicit knowledge about
syntactic and compositional properties of language is embedded in
the contextual representations of deep language models9,63. The
common representational space suggests that the human brain, like
DLMs, relies on overparameterized optimization to learn the statistical
structure of language from other speakers in the natural world32.

We acknowledge that the results were obtained from three
patients with dense recordings of their IFG. The dense grid research
technology is only employed by a few groups worldwide, especially
chronically, we believe that in the future, more of this type of data will
be available. The results should be replicated using information col-
lected from larger samples of participants with dense recordings.

To conclude, the alignment between brain embeddings and DLM
contextual embeddings, combined with accumulated evidence across
recent papers35,37,38,40,61 suggests that the brain may rely on contextual
embeddings to represent natural language. Themove from a symbolic
representation of language to a continuous contextual embedding
representation is a conceptual shift for understanding the neural basis
of language processing in the human brain.

Methods
Ethical oversight
Princeton University and New York University School of Medicine’s
respective Institutional Review Boards approved the Studies.

Participants
Three patients (two females (gender assigned based on medical
record); 24–48 years old) with treatment-resistant epilepsy under-
going intracranial monitoring with subdural grid and strip electrodes
for clinical purposes participated in the study. No statistical method
was used to predetermine the sample size. Three study participants
consented to have an FDA-approved hybrid clinical-research grid
implanted that includes additional electrodes in between the standard
clinical contacts. The hybrid grid provides a higher spatial coverage
without changing clinical acquisition or grid placement. Each partici-
pant provided informed consent following protocols approved by the
New York University Grossman School of Medicine Institutional
Review Board. Patients were informed that participation in the study
was unrelated to their clinical care and that they could withdraw from
the study without affecting their medical treatment.

Stimulus
Participants were presentedwith a 30-min auditory story stimulus, “So
aMonkey and a HorseWalk Into a Bar: ActOne, Monkey in theMiddle”
taken from theThis American Lifepodcast. The onset of eachwordwas
marked using the Penn Phonetics Lab Forced Aligner64 and manually
validated and adjusted (if necessary). Data acquisition and
preprocessing.

Preprocess
First, large spikes exceeding four quartiles above and below the
median were removed, and replacement samples were imputed using
cubic interpolation. Second, the data were re-referenced using com-
mon average referencing. Third, six-cycle wavelet decomposition was
used to compute the high-frequency broadband (HFBB) power in the
70–200Hz band, excluding 60, 120, and 180Hz line noise. In addition,
the HFBB time series of each electrode was log-transformed and
z-scored. Fourth, the signal was smoothed using a Hamming window
with a kernel size of 50ms. The filter was applied in both the forward

and reverse directions to maintain the temporal structure. Additional
preprocessing details can be found in prior work40.

Data were preprocessed using Matlab 2019b and The Fieldtrip
toolbox. Data was analyzed using Python packages are specified here
https://github.com/hassonlab/247-main/blob/main/env.yml. Brain plots
were done using a toolbox for MATLAB available at (https://github.
com/HughWXY/ntools_elec). All scripts for analyses are available at: All
the scripts for analyses can be found at: https://github.com/orgs/
hassonlab/repositories.

Contextual embedding
We extracted contextualized word embeddings from GPT-2 using the
Hugging Face environment65. We first converted the words from the
raw transcript (including punctuation and capitalization) to tokens
comprisingwhole words or sub-words (e.g., there’s→ there’s).We used
a slidingwindowof 1024 tokens,moving one token at a time, to extract
the embedding for the finalword in the sequence (i.e., theword and its
history). We extracted the activity of the final hidden layer of GPT-2
(which has 48 hidden layers). The contextual embedding of a word is
the activity of the last hidden layer given all the words up to and not
including the word of interest (in GPT-2, the word is predicted using
the last hidden state). The original dimensionality of the embedding is
1600, and it is reduced to 50 using PCA.

Brain embedding
We extracted brain embeddings for specific ROIs by averaging the
neural activity in a 200ms window for each electrode in the ROI. This
means that if there are N electrodes in a specific ROI for a specific
patient, then, for each lag (ranging from −4 s to +4 s in 25ms shifts
relative to word onset), there will be an N-dimensional embedding,
where each feature is the averaged neural activity of a specific elec-
trode of the neural recordings in awindowof 200ms (102-time points)
centered at the lag.

Zero-shot encoding model
Linear encoding models were estimated at each lag relative to word
onset to predict the brain embedding for each word from the corre-
sponding contextual embedding. Before fitting the encoding model,
we smoothed the signal using a rolling 200-ms window (i.e., averaged
every consecutive 102 samples). We used a tenfold cross-validation
procedure, ensuring that for each cross-validation fold, themodel was
estimated from a subset of unique training words and evaluated on a
nonoverlapping subset of unique, held-out test words: the words and
their corresponding brain embeddings were split into a training set
(90% of the unique words) for model estimation and a test set (10% of
the unique words) for model evaluation (zero-shot analysis). Only one
instance of each word was included in the analysis. We used ordinary
least squares (OLS)multiple linear regression for each cross-validation
fold to estimate a weight vector (for the 50-dimensionalmodel feature
space) based on the training words. We then used those weights to
predict the neural responses at each electrode (comprising a brain
embedding across electrodes) for the test words. We evaluatedmodel
performance by computing the correlation between the predicted
brain embedding and the actual brain embedding (i.e., the distributed
neural activity pattern) for each held-out test word; we then averaged
these correlations across test words. This procedure was repeated in
full at 321 lags at 25-ms increments from −4000ms to 4000ms relative
to word onset. As a control analysis, for each test word, we used the
nearest contextual embedding (in terms of cosine distance) from the
training set to predict the brain embedding for the test word.

Zero-shot decoding model
We used a decoding model to classify unseen words from the corre-
sponding brain embeddings. The neural signalswerefirst averaged per
electrode in ten 62.5-ms bins spanning 625ms for each lag. Each bin
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had 32data points (the neural recording sampling rate was 512Hz).We
used a tenfold cross-validation procedure, ensuring that for each
cross-validation fold, the decoding model was trained on a subset of
unique training words and evaluated on a nonoverlapping subset of
unique, held-out test words: the words and their corresponding brain
embeddingswere split into a training set (90%of the uniquewords) for
model estimation and a test set (10% of the unique words) for model
evaluation (zero-shot analysis). A neural network decoder (see archi-
tecture in Supplementary Information) was trained to predict the
contextual embedding for each word from the corresponding brain
embedding at a specific lag. Eight training folds were used for training
the decoder (training set), one fold was used for early stopping
(development set), and one fold was used to assess model general-
ization (test set). When predicting the embedding, the neural network
was optimized to minimize the mean squared error (MSE).

First, we computed the cosine similarity between the predicted
contextual embedding and all the unique contextual embeddings in
the dataset (Fig. 3 blue lines). We used a softmax transformation on
these scores (logits). For each label, we used these logits to evaluate
whether the decoder predicted the matching word and computed
an ROC-AUC for the label. Each test word is evaluated against the
other test words in that particular test set in this evaluation strategy.
To improve the decoder’s performance, we implemented an
ensemble of models. We independently trained six classifiers with
randomized weight initializations and randomized the batch order
supplied to the neural network for each lag. This procedure gener-
ated six predicted embeddings. Thus, we repeated the distance
calculation from each word label six times for each predicted
embedding. These six values were averaged and used to compute
the ROC-AUC.

Statistical significance
We used a bootstrap hypothesis test to assess the statistical sig-
nificance of the correlations between predicted and actual brain
embeddings. The test statistic reported for each lag is the average of
the correlations between the predicted brain embedding and actual
brain embedding across all test words. We then resampled these cor-
relations across words with replacement (5000 bootstrap samples) to
generate a bootstrap distribution around the mean correlation. We
then computed a p value based on the null hypothesis that the cor-
relation is zero. This procedure was repeated for each lag (321 lags),
and we controlled the false discovery rate (FDR) at q =0.0166.

To test whether there was a significant difference between the
performance of the model using the actual contextual embedding for
the test words compared to the performance using the nearest word
from the training fold, we performed a permutation test. At each
iteration, we permuted the differences in performance across words
and assigned the mean difference to a null distribution. We then
computed ap value for the differencebetween the test embedding and
the nearest training embedding based on this null distribution. This
procedure was repeated to produce a p value for each lag and we
corrected for multiple tests using FDR.

To compare the difference between classifier performance using
IFG embedding or precentral embedding for each lag, we used a paired
sample t-test. We compared the AUC of each word classified with the
IFG or precentral embedding for each lag. We used Bonferroni cor-
rection to account for the multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Theneural data are availableunder restricted access, for itmaycontain
sensitive information. Access can be obtained upon request fromAriel

Goldstein (the corresponding author). The data underlying the figures
can be found at https://zenodo.org/records/1065883167.

Code availability
We provide the code for replicating the core analyses of this manu-
script: https://github.com/hassonlab/247-plotting/blob/main/scripts/
tfspaper_zeroshot.ipynb68.
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