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Word embedding representations have been shown to be effective in predicting human neural responses to lingual stimuli. While these
representations are sensitive to the textual context, they lack the extratextual sources of context such as prior knowledge, thoughts,
and beliefs, all of which constitute the listener’s perspective. In this study, we propose conceptualizing the listeners’ perspective
as a source that induces changes in the embedding space. We relied on functional magnetic resonance imaging data collected by
Yeshurun Y, Swanson S, Simony E, Chen J, Lazaridi C, Honey CJ, Hasson U. Same story, different story: the neural representation of
interpretive frameworks. Psychol Sci. 2017:28(3):307–319, in which two groups of human listeners (n = 40) were listening to the same
story but with different perspectives. Using a dedicated fine-tuning process, we created two modified versions of a word embedding
space, corresponding to the two groups of listeners. We found that each transformed space was better fitted with neural responses
of the corresponding group, and that the spatial distances between these spaces reflect both interpretational differences between the
perspectives and the group-level neural differences. Together, our results demonstrate how aligning a continuous embedding space to
a specific context can provide a novel way of modeling listeners’ intrinsic perspectives.
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Introduction
People process language in a very flexible and adaptable way. We
are naturally able to encode the exact meaning of a word or phrase
even in cases when it has several possible meanings, considering
the context in which it appears. For example, the meaning of the
word ‘cold’ varies between the contexts of cold weather, cold per-
sonality, and cold symptoms. One source of contextual informa-
tion comes from the text itself, namely, from words or sentences
that appear elsewhere in the text and shape the way the current
word is interpreted. This phenomenon was extensively demon-
strated in behavioral and neuroimaging studies (Federmeier
et al. 2000; Van Berkum 2008; Nieuwland 2014; Van Berkum and
Nieuwland 2019), and more recently also using deep language
models (DLMs) that emerged from the natural language process-
ing (NLP) field (Devlin et al. 2018; Peters et al. 2018; Radford et al.
2019). Another contextual information that shapes our language
comprehension, and that was less investigated, is information
that is not part of the text, but was obtained from other, external
sources such as our thoughts, attitudes, and believes, all of which
form our perspective regarding the text (Yeshurun et al. 2021).
For example, while listening to a political debate, a listener
may rely not just on the current and past statements of the
speakers, but also on his own prior knowledge and political
attitudes toward the topic. The current study suggests a novel
computational framework to model this latter type of context, i.e.

the human perspective, relying on the computational building-
block of all recent state-of-the-art DLMs, the word embeddings
representation.

In recent years, cognitive neuroscience researchers have
started leveraging DLMs from NLP to better understand the
neural mechanism of human language processing (Jain and Huth
2018; Schwartz et al. 2019; Caucheteux et al. 2021; Goldstein
et al. 2022a). DLMs are massive artificial neural-network-based
models of natural language capable of achieving human-level
performances in many language tasks, including machine
translation, text summarization, sentiment analysis, and more
(Wu et al. 2016; Devlin et al. 2018, Peters et al. 2018; Aharoni
et al. 2019). These models are trained using a massive amount
of real-world texts, to predict the identity of missing words in a
string of text (Devlin et al. 2018; Peters et al. 2018). As part of the
neural computation, the DLM learns to represent each word via
a multidimensional numerical vector, or a ‘point’ in a continuous
space, known as the word embedding space. It turns out that
the word embedding space effectively encodes many aspects
of language, such as syntax, semantics, and pragmatics (Rogers
et al. 2020). Interestingly, recent studies have demonstrated that
word embedding vectors derived from such models can be used
to predict neural responses in brain language areas during the
processing of human language (Jain and Huth 2018; Schwartz et al.
2019; Caucheteux et al. 2021; Goldstein et al. 2022a). In addition,
we recently found shared computational principles between the
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ways the brain and DLMs process natural language (Goldstein
et al. 2022b). These findings suggest that DLMs may serve as
cognitive models for how humans process natural language.

The embedding space in DLMs is sensitive to the textual con-
text. For example, the vector representation of the word ‘cold’ in
the sentence ‘you are cold as ice’, will change as a function of
other words in the text (e.g. whether the text discusses health
issues or personality traits). But importantly, the embedding space
is not affected by extratextual contextual sources that consti-
tute the listener’s perspective (i.e. previous thoughts, attitudes, and
beliefs). To bridge this gap, we introduce a novel computational
process by which we change the word embedding space to fit the
language representation under a certain extratextual perspective.
By this method, we can create multiple word embedding spaces so
that each word embedding-space encodes language representa-
tions under a different human perspective. Our main assumption
is that the variations we apply on the word embedding space can
serve as a potential model for how humans change their language
interpretation under different perspectives.

Multiple word embedding spaces in this study were created
using fine-tuning—a common practice in deep learning (Hinton
2007). As mentioned above, DLMs are typically pre-trained using
very large textual corpora (billions of words), sampled from a
variety of textual domains and sources. This pre-training stage
allows the model to learn how language is used across many
natural contexts. Fine-tuning is a procedure used to adjust the
embedding space to better fit to a specific narrower context (e.g.
academic articles). In this study, we propose harnessing the fine-
tuning technique to create a version of a DLM that fits a specific
human perspective by designing an appropriate training setup
and using a relevant dataset. Moreover, by designing multiple
types of fine-tuning (i.e. using different datasets of different
domains) we can create multiple versions of a DLM (and the
corresponding word embedding space), each fits a different
possible human perspective.

We test our idea using data from an functional magnetic res-
onance imaging (fMRI) experiment conducted by Yeshurun et al.
(2017). In their experiment, two groups of participants (n = 20 for
both groups) listened to the same audio recording of a short story
by J.D. Salinger (‘Pretty Mouth and Green My Eyes’). In the story,
a husband loses track of his wife at a party and returns alone
to their apartment in the city. Worried and anxious he calls his
best friend, in the middle of the night, about the whereabouts of
his wife. Next to the best friend, in bed, lies a mysterious woman
whose identity is kept intentionally vague. Is she the wife, having
an affair with the best friend (cheating context), or is she the
friend’s girlfriend, and the husband is unreasonably jealous as
his friend implies (paranoia context)? Deciding between these
two perspectives will have great consequences for interpreting
the conversation. Before listening to the story, each experimental
group was primed to adopt only one of these extratextual perspec-
tives. The listener’s perspective (cheating vs. paranoia) affected
the neural responses to the story in areas with a long processing
timescale, including the default mode network (DMN; Mars et al.
2012, Yeshurun et al. 2021), and frontal areas related to high-level
language processing (Fletcher et al. 1995; Adolphs 2009; Mar 2011).

To implement our procedure in a way that simulates the two
possible internal perspectives of Yeshurun et al.’s experiment, we
created two alternative word embedding spaces by fine-tuning the
DLM Bidirectional Encoder Representations from Transformers
(BERT; Devlin et al. 2018) using either a dataset that focuses on
‘cheating’ stories, or a dataset that focuses on ‘paranoia’ stories.
Our main aim is to test whether word embedding representations

derived from the fine-tuned (cheating vs. paranoia) DLMs bet-
ter fit the neural responses to Salinger’s story in listeners with
the matching perspective (cheating vs. paranoia). Such results
demonstrate how aligning a continuous embedding space to a
specific context can provide a novel way of modeling listeners’
intrinsic perspectives.

Materials and methods
fMRI data
Participants, stimuli, and experimental design
The current study reanalyzes a previously published fMRI dataset
(Yeshurun et al. 2017). The dataset consists of fMRI scans of 40
right-handed subjects assigned to one of the following experi-
mental conditions: Cheating (10 females, 10 males, age: M = 20.85,
Standard deviation = 3.73) or Paranoia (9 females, 11 males, age:
M = 21.45, Standard deviation = 3.42).

The stimulus was a 11 min and 32 s record of a professional
actor reading a short story of J.D. Salinger: ‘Pretty Mouth and
Green My Eyes.’ The story describes a phone conversation between
two friends, Arthur and Lee. Arthur has returned home after a
party, and he lost track of his wife, Joanie. He is calling Lee to
share his concerns over her whereabouts. Lee is at home, and a
woman is lying on the bed next to him. The woman’s identity is
ambiguous—she may or may not be Joanie, Arthur’s wife. Before
listening to the story, participants were provided with a short
introduction (∼30 s) either specified that Arthur’s wife is cheating
on him with Lee (for the cheating condition), or that Arthur is
paranoid and that his wife is not cheating on him (for the para-
noia condition; Fig. 1). A story-comprehension questionnaire was
administered immediately after the scan, and statistical analyses
of the responses indicate that the context manipulation did affect
the subject’s interpretation of the story (see Yeshurun et al. 2017
for more details).

Preprocessing and voxel selection. The fMRI data were prepro-
cessed by Yeshurun et al. (2017) and included the following steps:
Motion correction, slice-time correction, linear-trend removal,
high-pass filtering (two cycles per condition; ∼0.003 Hz), spatial
smoothing (Gaussian filter of 6-mm full width at half maximum
(FWHM)), spatial transformation to 3-D Talairach space (Talairach
and Tournoux 1988), and hemodynamic delay correction (based
on the correlation between the audio envelope and the BOLD
signal recorded from the A1).

To filter out stimulus-irrelevant voxels, we executed a voxel-
wise inter-subject correlation analysis (ISC, Hasson et al. 2004)
across all of the gray matter: For each voxel, we isolated each
subject’s time-course and correlated it with the averaged time-
course of the remaining subjects. The voxel’s ISC-score is calcu-
lated by averaging the correlation scores (after Fisher’s Z trans-
formation) obtained from repeating this process for all subjects.
To assess how significantly each ISC-score is different from zero,
we conducted a non-parametric permutation test by randomizing
the phase of the signal (Simony et al. 2016) 1,000 times prior
to ISC calculation and used the obtained null-distribution to
estimate the P-value. We ran this procedure separately for each
experimental group (cheating/paranoia) and selected for subse-
quent analyses only voxels that achieved a significant ISC-score
(P < 0.01, corrected for multiple tests using FDR) in both groups.
The process yielded a total of 11,783 ‘stimulus-locked’ voxels.

Behavioral data
Besides neuroimaging data, we also used behavioral data
collected by Yeshurun et al. (2017), which quantifies the effect
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Fig. 1. An illustration of both the neural and the computational context-dependent representations of the same narrative. The left side represents the
fMRI experiment by which the neural representations were acquired: 40 subjects were listening to an ambiguous short story that can be interpreted
in two main contexts, cheating or paranoia. Half of the subjects were primed to the cheating context, and the other half were primed to the paranoia
context. The right side illustrates the computational modeling of the experiment. Two context-dependent language models were created, each simulates
a different context. We used each model to extract vector representations of the story (a.k.a. embedding vectors).

of context on participant’s interpretation across the story. The
text was divided into 179 segments (Mean duration = 3.77 s,
Standard deviation = 2.39 s) by an independent expert annotator,
and five independent raters were asked to rate how differently
participants from different groups (cheating/paranoia) would
interpret each segment. The raw scores (on a scale from 1 to
5) were first standardized to Z-scores for each rater, and then
averaged across raters. The inter-rater reliability was high, as
reflected by a Cronbach’s α coefficient of 0.84 [See Yeshurun
et al. (2017) for more details].

Computational modeling
We propose a novel method for computational modeling of con-
text modulation in story interpretation. The main idea is to take
a pre-trained language model and modify (fine-tune) it toward
either the cheating or the paranoia contexts. Specifically, we
used a well-accepted language model—BERT (Devlin et al. 2018)—
as our initial, context-independent language model. This model
was originally developed to be trained via a two-stage learning
procedure: pre-training followed by fine-tuning and is considered
the ‘prototype’ model of this type of learning. This is in contrast
to other state-of-the-art language models, such as Generative Pre-
trained Transformer (GPT; Radford et al. 2019) or T5 (Raffel et al.
2020), that are less compatible with the fine-tuning procedure.
Accordingly, we next designed a fine-tuning process that creates
two new context-dependent variants of BERT—CheatBERT (for the
cheating context) and ParaBERT (for the paranoia context). We
administered the fine-tuning process using dedicated datasets
and classification tasks as described below.

Fine-tuning tasks and datasets. We defined two binary classifi-
cation tasks: One to distinguish between cheating stories and
no-cheating stories, and the other to distinguish between para-
noia stories and no-paranoia stories. Our basic hypothesis is that
fine-tuning BERT on these tasks (i.e. updating its parameters,
which were set in the pre-training stage) would bias its internal
representation of language toward the cheating (when using the
first fine-tuning task) context or the paranoia context (when using
the second fine-tuning task).

For these tasks, we collected 2,829 short stories (between 100
and 4,096 words; average number of words = 757.27, Standard
deviation = 677.58; Fig. S2) concerning matters of relationships
and romance. The stories were written by users of the Medium.
com and Reddit.com websites. To locate relevant stories from
Medium.com, the following website-tags were used: marriage, rela-
tionships, romance, affairs, jealousy, monogamy, polygamy, and dating.
The stories from Reddit.com were extracted from the following
subreddits: askwoman, relationships, relationship_advice, romancesto-
ries, retroactive_jealousy, short_stories, sex, and teenagers.

Each of the stories was manually tagged with one of the follow-
ing three classes: Cheating (n = 843), Paranoia (n = 1046), and Other
(n = 940). There were two independent annotators, and stories for which
there was disagreement were not used. The tagging was based on the
reader’s impression of the central theme emerging from the story, if it was
mainly about cheating (affair), paranoia (jealousy), or none of them. We
used the stories labeled with Cheating and Other for the cheating
vs. no-cheating classification (fine-tuning) task, and the stories
labeled with Paranoia and Other for the paranoia vs. no-paranoia
classification (fine-tuning) task.
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Model architecture and the fine-tuning procedure. The same archi-
tecture was used for both the cheating- and the paranoia- classi-
fication models and is illustrated in Fig. S1. It consists of one clas-
sification head located on top of the original pre-trained version
of the BERT encoder (‘base’ version, taken from the Huggingface
repository). Since BERT’s input is limited to a maximum of 512
tokens, and most of our stories are longer, a sliding window
method (Pappagari et al. 2019) has been adopted. For each story,
a fixed size window was ‘moved’ across the text, with an overlap
between the windows (the size of the overlap as well as the size
of the windows are both hyper-parameters of the model). Each
textual window was fed into BERT, together with the standard
prefix and suffix tokens (The “classification” token “CLS” and the
“separation” token “SEP”), and the output vectors of all its tokens
(apart from the CLS and the SEP tokens) were then averaged
together, yielding a single window-representation vector.

Next, vectors from all the windows were fed into the classifi-
cation head, which consists of one attention layer, and one fully
connected nonlinear layer (with sigmoid activation) on top of it.
The final output is a scalar ranging from 0 to 1, which represents
the certainty of whether the story is about cheating or paranoia
(1) or about other relationships related content (0).

The classifiers were trained to minimize the binary cross-
entropy loss, using the batch gradient-descent algorithm (batch-
size = 4). A total of 70% of the data was assigned for training, 15%
for testing, and the remaining 15% for development and hyper-
parameters calibration. The hyper-parameters included: window
size {128,256,512}, overlap size {0,32,64,128}, the attention layer’s
dimension {64,256,512}, the number of neurons in the fully con-
nected layer {32,64,128,256}, and the learning rate {1e – 3,1e –
4,1e – 5}. The training procedure ran epoch by epoch until no

improvement was obtained in the model’s predictions on the
development data (The final number of epochs was 10 for Cheat-
BERT, nine for ParaBERT and SpaceBERT; and eight for MedBERT,
GunsBERT, and MideastBERT). Model performance was evaluated
using a standard accuracy metric on the predicted scores (scores
higher than or equal to 0.5 have been considered as 1, and
lower than 0.5 as 0), which returns the proportion of the correct
predictions.

Importantly, the original BERT’s parameters from the top three
(out of 12) layers were all updated during the training (the remain-
ing parameters were maintained frozen due to a limited compu-
tational power).

Control models. Besides CheatBERT and ParaBERT, we created
four additional BERT variants using the same fine-tuning proce-
dure, but with different datasets and classification tasks. These
models serve as control (baseline) models in our analyses. These
variants are divided into two model pairs, where the members
of each pair differ from each other in the specific context they
model, but their contexts still refer to the same general theme
(just as CheatBERT and ParaBERT both refer to the relationships
and romance theme). The pairs were SpaceBERT—MedBERT (Med
stands for medicine) and GunsBERT—MideastBERT. The models
in the first pair are generally related to science, while those of the
second pair are related to politics.

We used subsets of the publicly available 20Newsgroup dataset
(http://qwone.com/∼jason/20Newsgroups/) for training (fine-
tuning) these BERT-based classifiers: SpaceBERT was trained
to distinguish texts tagged with sci.space (n = 987) from other
science relevant texts (tagged with sci; n = 991); MedBERT was
trained to distinguish texts tagged with sci.med (n = 990) from
other science relevant texts (tagged with sci; n = 991); GunsBERT
was trained to distinguish texts tagged with politics.guns (n = 780)

from other politics relevant texts (tagged with politics; n = 685);
Finally, MideastBERT was trained to distinguish texts tagged with
politics.mideasst (n = 795) from other politics relevant texts (tagged
with politics; n = 685).

Classifier evaluation. The first step in assessing the advantage of
this procedure is to evaluate the performance of the difference
classifiers. If this method is indeed effective, classifiers should
achieve high accuracy scores when tested on the tasks they were
trained on, but also, they should show a reduced accuracy in
performance on tasks they were not trained on. All six classifiers
resulted in a high accuracy score on the test data of their task,
ranging from 0.80 to 0.95 (see Supplementary 2 and Table S1).
Testing these classifiers on tasks that they were not trained on
(e.g. testing the CheatBERT model on the paranoia classification
task), indeed leads to a substantial performance drop. This implies
that the models are all selectively specialized to the task they were
trained on, and each one indeed captures a different and unique
context.

Interestingly (and not surprisingly), as can be seen in Table
S2, the performance declines are not uniform across all novel
tasks, but rather they are affected by the global context they are
sharing with each model. The performance of the models on novel
tasks that belong to their global context (for example, CheatBERT
and the paranoia classification task are sharing the same global
context, which is romance and relationships), are better than
their performance on novel tasks that do not relate to the global
context (e.g. CheatBERT and the space-classification task).

Extracting neural and computational
representations
The current research examines the relationships between neu-
ral and computational representations of the story. Representa-
tions were extracted segment-wise in accordance with the above
mentioned (in the Behavioral Data section) textual segmentation
of Salinger’s story (n = 179 segments, Fig. 1). The BOLD signals
of each stimulus-locked voxel (n = 11,783, see in the fMRI Data
section) were ‘down-sampled’ from TR resolution (TR = 1.5 s) to
a segment resolution by averaging all TRs within each segment
(Mean number of TRs per segment = 2.51, standard deviation = 1.63).

We extracted segment-wise computational representations
from each of our seven BERT variants [CheatBERT, ParaBERT,
the original (pre-trained but not fine-tuned) BERT, and the four
control models]. The extraction process was identical for all
models since they all have the same architecture (12 attention-
blocks stacked on top of each other). Each segment was fed to
the model, together with a context of additional four segments—
the two that preceded and the two that succeeded the relevant
segment (whenever possible), as well as with the special tokens:
CLS and SEP (These tokens represent the start/finish of the
sentence). A vector representation of the segment was obtained by
averaging only the embedding vectors (i.e. the output of layer 12
of the model) of the tokens, which belong to the relevant segment.
This procedure yielded, for each model, a 179 (segment) by 768
(the BERT dimensionality) matrix (Fig. 1).

Since the dimensionality of the segment embedding vectors
(768) is much higher than the number of samples in the data (179),
we reduced the dimension of the vectors into 32 using principal
component analysis (PCA; see also Goldstein et al. 2022a). PCA was
calculated separately for each pair of models, and for the original
BERT. Reducing to 32 dimensions provides a reasonable balance
between the relatively low dimensionality and the relatively large
fraction of the original variance preserved after the transforma-
tion (71% for CheatBERT-ParaBERT, 80% for SpaceBERT-MedBERT,
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72% for GunsBERT-MideastBERT, and 68% for BERT). (The results
below were also replicated using other dimensionalities, ranging
from 16 to 75 dimensions.)

Semantic space analysis
The fine-tuning procedure has changed the internal parameters
of BERT, and as a result, the word embedding space itself. The
current analysis aims at investigating the word embedding spaces
induced by CheatBERT and ParaBERT, and testing whether these
changes are reasonably consistent with the manipulated per-
spectives (cheating/paranoia). To do that, we started by taking
the 20 segments of the story that were rated by independent
human-raters as those whose interpretation is most likely to
change between cheating or paranoia perspectives (i.e. the top
20 segments from the behavioral dissimilarity scores). Next, we
chose, a-priori, from each segment, the one or two keywords
that best reflect the main semantic theme of the segment (there
was a full agreement among the authors regarding each of the
choices) and examined the extent to which the vector represen-
tations of the keywords were spatially changed between Cheat-
BERT and ParaBERT. For each keyword, we calculated the cosine
dissimilarity score between its vector representation, as obtained
from CheatBERT, and its vector representation as obtained from
ParaBERT. These cosine scores were then Z-normalized across all
possible cosine scores, obtained from all the words of the story
(1,876 words in total), so the keywords’ distances (dissimilarity)
scores can now be interpreted in relative to the distances obtained
at random. We also do the same analysis, using all words in
each section, to see that our method is robust for the selection
of specific keywords. For comparison, we replicated these anal-
yses using our control models (i.e. the vector representations
obtained from the pairs: SpaceBERT—MedBERT, and Mideast-
BERT—GunsBERT) as well.

Encoder-based context classification
We aim to show that our fine-tuned models (CheatBERT and
ParaBERT) capture the information encoded in the brains of the
participants, which belong to the corresponding group (Cheat-
BERT for the cheating group and ParaBERT for the paranoia group).
In other words, we hypothesize that the neural signal of each
of the subjects would be better associated with the congruent
model (e.g. the CheatBERT model with subjects from the cheating-
condition group) than with the incongruent one (e.g. the ParaBERT
model with subjects from the cheating condition and vice versa).
Likewise, according to this hypothesis, we can use the models to
predict the context in which a given subject listened to the story
(cheating/paranoia), by correlating his/her neural signal with both
CheatBERT and ParaBERT and checking which model is better
correlated (Fig. 3a). By this logic, we formulated a voxel-wise
classification task through that we can quantify the ‘goodness of
fit’ of our models.

One way of measuring the level of association between DLMs
and the brain is via neural encoding (Jain and Huth 2018; Goldstein
et al. 2022a). A neural encoder is a voxel-wise linear regression
model that takes as input word embedding vectors that were
extracted from the DLM and predicts the corresponding level
of the neural signal as recorded from a single voxel (usually a
1-dimensional scaler). From the neural-encoder model, we can
extract a R2

adj-score (adjusted coefficient of determination) and
use it as an estimator for the level of association between the
DLM and the neural signal. Our voxel-wise classifier exploits
this neural-encoding scheme to measure the level of association
between each model (CheatBERT and ParaBERT) and the subject’s

neural signal in a single voxel and predicts the context (cheating
or paranoia) according to the model that achieved the highest R2

adj

score. The full process is described below.
For each stimulus-locked voxel (11,783 voxels with reliable

ISC, see in the fMRI Data section), the classifier iterates over all
subjects’ brains (n = 40) and predicts the context (cheating/para-
noia) as follows: First, we fit two linear regression models to
predict the neural time-course from the vector representations of
the story (a.k.a ‘neural encoder,’ see Jain and Huth, 2018; Goldstein
et al. 2022a). The linear regression takes as input the vector
representation of a segment (a 32-dimensional vector, see Section:
‘Extracting neural and computational representations’) and predicts the
averaged BOLD signal corresponding to that segment. One model
uses vectors extracted from CheatBERT, and the other uses the
ParaBERT’s vectors. Then, we calculate the R2

adj score (adjusted
coefficient of determination) from each model and classify the
context in accordance with the best R2

adj score. Namely, if the

CheatBERT’s R2
adj score is higher than the ParaBERT’s R2

adj score,
we will classify that brain as cheating, and vice versa (Fig. 3a).
We evaluate the classifier by calculating the accuracy rate of its
prediction (the number of correct predictions divided by 40). This
procedure provides a single accuracy score for each voxel, which
quantifies the extent to which our models fit the neural signal in
different brain areas.

We repeated the same analysis using other pairs of control
models, for the purpose of comparison. The alternative pairs were:
CheatBERT vs. BERT, BERT vs. ParaBERT, GunsBERT vs. Mideast-
BERT, and MedBERT vs. SpaceBERT. The significance testing of this
analysis is described in the Statistical analysis section below.

Distance analysis
The neural modulation caused by the context is not uniform, but
varies throughout the story: there are parts of the story that cause
more substantial neural differences between brains compared to
other parts of the story (Yeshurun et al. 2017). We wanted to test
whether this dynamic is also encoded in our fine-tuned models. To
test this, we calculated the distance between each pair of segment
embedding vectors (extracted from CheatBERT and ParaBERT)
using the cosine distance (which is equal to 1 minus the cosine
similarity of the vectors). This process yielded a 179-dimensional
distance vector (corresponding to the 179 segments of the story,
Fig. 3b). Likewise, we calculated the neural differences (distance)
between the average brain activity of the cheating group and the
average brain activity of the paranoia group. This is done by taking
the absolute values of the differences between the averaged brain
activities of each segment in every stimulus-locked voxel. This
process yielded a single 11,783 (voxels) by 179 (segments) matrix
of neural distance scores. Finally, we calculated the correlation
between each voxel’s neural distance and the model’s distance
vector using Pearson’s r (Fig. 3b).

In addition, we analyzed the correlation between the models’
distance vector and the differences in human interpretation of
the story (the behavioral measurement, see in the Behavioral data
section). The analyses were repeated using other distance vectors
extracted from the following pairs of control models: CheatBERT
vs. BERT, BERT vs. ParaBERT, GunsBERT vs. MideastBERT, and
MedBERT vs. SpaceBERT. The significance tests of these analyses
are detailed below in the Statistical analysis section.

Statistical analysis
All analyses were tested for statistical significance using non-
parametric permutation tests. In the classification analysis (the
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Fig. 2. The classifier-based fine-tuning process. We aim to create two new context-dependent language models by changing the parameters of an existing
pre-trained model (BERT) to point toward the cheating or the paranoia context. First, we collected ∼3,000 short stories, tagged as cheating, paranoia,
or neutral stories. Then, we trained (fine-tuned) a BERT-based classifier (the BERT model with a classification head; Fig. S1 and Table S1) on either the
cheating vs. no-cheating or the paranoia vs. no-paranoia classification task, updating the parameters of both the pre-trained BERT model and of its
classification head. Finally, we removed the classifier head and were left with the new, cheating- (or paranoia-) induced variant of BERT: CheatBERT (or
ParaBERT).

Encoder-based context classification section) we tested the signif-
icance of the accuracy scores by creating an estimated null-
distribution using 1,000 permutations of the data. In every permu-
tation step we shuffled the labels (i.e. cheating/paranoia) of the
participants, ran the classification analysis on that randomized
data, and saved the accuracy scores. The procedure returns a
different 1,000-sized distribution for each voxel (for a total of
11,783 voxels). To account for multiple hypothesis testing, we
calculated the P-values of the observed (real) accuracy scores
using family wise error rate (FWER; Nichols and Hayasaka 2003)
estimation: We combined the 11,783 distributions into a single,
1,000-sized distribution by taking only the maximum value (i.e.
the best voxel’s accuracy score) from each permutation step. Next,
we calculated the p(FWER) score from the obtained max-values
null-distribution using the following formula:

p(FWER) = (k + 1)/1,000,

where k is the number of max-values larger than the real value.
We considered a voxel’s score as significant if its p(FWER) was
smaller than 0.05.

The same procedure was applied for the remaining analyses
and the only difference was regarding the way we permuted
the data. In the distance analysis (the Distance analysis section)
we calculated the p(FWER) of each Pearson’s r score using the
max-values null-distribution obtained from 1,000 permutations,
as above, but the data was permuted using randomized phase-
shuffling. This method randomizes the signal while maintain-
ing the exact mean and autocorrelation as the original signal
(Simony et al. 2016). We implemented this shuffling method
by applying a fast-Fourier transformation on the original signal,
randomizing only the phase component of the signal, and then
applying an inverse fast-Fourier transformation using the original
frequency magnitudes and the randomized phases. The shuffling
was performed only on the neural signals. In the models-behavior
correlation analysis we shuffled only the behavioral signal.

Code and data
The dataset we collected for this study, as well as the code
for our analyses are available for free in https://github.com/
RefaelTikochinski/Modeling-perspective-changes-in-human-listeners.

Results
Same story, different word embedding
representation
Using fine-tuning, we induced changes in the word embeddings
space of the pre-trained model BERT (This DLM was specifi-
cally designed for fine-tuning, unlike other state-of-the-art mod-
els.) (Devlin et al. 2018), creating two alternative word embed-
ding spaces, CheatBERT and ParaBERT, one for each of the two
possible listener’s perspectives in listening to the J.D. Salinger’s
story, cheating or paranoia. CheatBERT was created by fine-tuning
BERT to distinguish between cheating and no-cheating stories and
ParaBERT was created by fine-tuning BERT to distinguish between
paranoia and no-paranoia stories (See Materials and methods;
Figs. 1 and 2). Next, we extracted embedding representations of
Salinger’s story using both CheatBERT and ParaBERT. This pro-
cess yielded two different sets of vectors, each represents the
exact same story, but with a different perspective (Fig. 1). In addi-
tion, for comparison, we also created another four ‘control’ word
embedding spaces using the same fine-tuning procedure but with
completely different datasets and topics (SpaceBERT, MedBERT,
MideastBERT, and GunsBERT; see Materials and methods).

Before testing our procedure on the fMRI data, we conducted
a sort of ‘manipulation-check’ to test whether the various word
embeddings spaces capture changes in the semantic interpreta-
tion across the two perspectives (cheating/paranoia). To do that,
we started by taking the 20 segments of the story that were rated
by independent human-raters as those whose interpretation is
most likely to change between the cheating and paranoia per-
spectives (i.e. the top 20 segments from the behavioral dissimilarity
scores; see Materials and methods). Next, in each segment, we
focused on the change in the embedding representation across
the two word embedding spaces (Z-normalized cosine distance,
see Materials and methods) for keywords that drive the different
interpretations across perspectives. We also performed the same
analysis using all words in each section, to see that our method is
robust for the selection of specific keywords. For example, in the
top section, Arthur [the husband] asks Lee [the friend]: ‘did you
happen to notice when Joanie [the wife] was leaving?’ Lee replies: ‘No,
I didn’t, Arthur’. The word ‘No’ is the keyword of that segment, as
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Fig. 3. The extent of the change between the vector representations of the different models in the top 20 relevant segments (i.e. segments that were rated
by independent human raters as those whose interpretation is most likely to change between cheating or paranoia perspectives). The figure presents
the averaged Z-normalized cosine-distance score of either selected keywords (left panel) or the entire segments (right panel), as calculated between
CheatBERT’s and ParaBERT’s representations, compared to the scores obtained from the control model paires. ∗P < 0.05, ∗∗P < 0.005, ∗∗∗P < 0.00001.

its hidden intention subtly changes under the two perspectives.
According to the cheating perspective, the ‘No’ hints of a lie,
since Arthur’s wife is actually in bed with him at that moment.
In contrast, from the paranoia perspective, the ‘No’ reflects the
accurate state of affairs given that the woman in Lee’s bed is not
Joanie but his legitimate girlfriend.

Indeed, the Z-normalized distance between the CheatBERT’s
and the ParaBERT’s vector representations of the word ‘No’ was
1.33, that is, 1.33 standard-deviation units above the average
distance score of all the words in the story. In contrast, the
Z-normalized scores obtained from the control models were lower
and much closer to the averaged distance score of all the words
in the story: 0.18 and 0.80 for SpaceBERT—MedBERT and Mideast-
BERT—GunsBERT, respectively. Similar results were obtained for
26 keywords across the 20 segments (Table S3; this table also
contains the bottom 20 segments for comparison). To calculate
significance, we calculated the average Z-normalized distance
between the CheatBERT’s and the ParaBERT’s word embeddings
across all 20 segments, and demonstrated how it was significantly
higher than the distance for the same keywords across the control
fine-tuned models (Fig. 3A). While slightly lower, the same pattern
of results holds when we include all words in the segment (Fig. 3B).
Together, our results imply that our fine-tuning procedure modi-
fies the relevant areas of the word embedding space in a way that
properly reflects the change in perspective of the human listeners.

Variations on the word embedding space fit
contextual modulation in the brain
Creating two alternative word embedding spaces (CheatBERT and
ParaBERT) allows us to model perspective-based unique neural
responses of our listeners. First, in line with previous studies, the
word embeddings representations of Salinger’s story, as extracted
from either CheatBERT or ParaBERT, were highly effective in pre-
dicting the averaged neural signal of both group of listeners,
using a standard voxel-wised neural encoder (Jain and Huth 2018;
Schwartz et al. 2019; Caucheteux et al. 2021; see Materials and
methods). For the cheating group, the CheatBERT model signifi-
cantly predicted 8,226 voxels (69.8% of all stimulus-locked voxels,
0.26 < R2

adj < 0.59, mean R2
adj = 0.37) and the ParaBERT model

significantly predicted 5,998 voxels (50.09%, 0.26 < R2
adj < 0.58,

mean R2
adj = 0.35; Figs. 5A and S4). For the Paranoia group, the

ParaBERT model significantly predicted 6,692 voxels (We attribute
the smaller number of predicted voxels in the paranoia group
to the fact that in this group the between-subjects variance is
much larger than in the cheating group, as reflected in a relatively
lower ISC-score [ISC; (See Fig. S3 and Materials and methods)].
Explaining this observation is beyond the scope of this study and
is kept for future work.) (56.7%, 0.24 < R2

adj < 0.60, mean R2
adj = 0.35)

and the CheatBERT model predicted 3,774 voxels (32%, 0.30 <

R2
adj < 0.57, mean R2

adj = 0.38; Figs. 5a and S4. For a compar-
ison of fine-tuned to original BERT, see Supplementary 3 and
Fig. S4). Importantly, we detected a subset of voxels in which
the neural signal was better predicted by the congruent models
(i.e. CheatBERT for the cheating groups and ParaBERT for the
paranoia group) than by the incongruent models (e.g. CheatBERT
for the paranoia group). Specifically, we applied our novel encoder-
based classification analysis (Fig. 4A; see Materials and methods)
that its accuracy score reflects the proportion of listeners whose
neural activity was better predicted with the congruent model.
We perform the analysis on a voxel-by-voxel level, among all the
stimulus-locked voxels (n = 11,783; Fig. S3). The classifier accuracy
rate was above the chance level in 921 voxels, ranging from
62.5% to 85% (P < 0.05, family wise error corrected). These voxels
encompass brain regions that resemble those typically found in
the DMN [Bilateral temporoparietal junction (TPJ), middle frontal
gyrus, and Precuneus; see Yeshurun et al. 2021], as well as in
the right ventrolateral prefrontal cortex (vLPFC), bilateral superior
temporal gyrus (STG), and middle temporal gyrus (MTG) (Fig. 5B
and Table 1). Hence, neural responses in these brain areas that
are unique to each group of listeners (cheating and paranoia
group), are significantly associated with the unique information
encoded in the corresponding fine-tuned model (CheatBERT and
ParaBERT).

The original pre-trained BERT model or the BERT models that
are fine-tuned in unrelated contexts were not beneficial in classi-
fying the listener’s perspective. Running the same classification
procedure but replacing ParaBERT with BERT yielded only 25
significant voxels (17 voxels from the vLPFC and eight voxels from
the cuneus, max scores: 70% and 65%, respectively), and replacing
CheatBERT with BERT yielded zero significant voxels. Likewise,
we found no significant voxels when replacing the ParaBERT and
CheatBERT models with the other control-models pairs, MedBERT-
SpaceBERT, and GunsBERT-MideastBERT.
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Fig. 4. Illustrations of the two primary analyses applied in this paper. A) The voxel-wise encoding-based classifier. The classifier predicts the context in
which subjects interpreted the story, by competing the models against each other in their ability to encode the voxel’s BOLD signal. The context would
classify as cheating if the CheatBERT-based encoder is better than the ParaBERT-based encoder, and vice versa (measured by comparing the encoders’
R_adj2 scores). B) The distance analysis. The difference between the cheating-induced and the paranoia-induced interpretations was quantified for each
segment, in all modalities: Language models, brains, and behavior. From the language models, we extracted a distance vector by calculating the cosine
dissimilarity between models’ vector representations. From the neural data, we extracted a distance vector for each voxel by taking the absolute values
of the differences between the averaged signal of the cheating group and the averaged signal of the paranoia group. The behavioral distances vector
was collected by asking five independent raters to rate, for each segment, how differently subjects from different groups would interpret the segment.
We analyzed the correlations between the models’ distance vector and the neural distance vectors, and between the models’ distance vector and the
behavioral measurement.

Distances between the word embedding spaces
are correlated with both neural and behavioral
distances
The effect of the listener’s perspective on the narrative inter-
pretations is not fixed, as some moments in the story are
more ambiguous and malleable to shift in context, while others
are less open to multiple interpretations. To assess whether
our fine-tuned models capture the dynamic fluctuations in

interpretability across subjects who listened to the same story
while having two opposing perspectives (contexts) we performed
two analyses.

In the first analysis, we calculated, for every segment,
the cosine dissimilarity score between the vector representa-
tions of both CheatBERT and ParaBERT, and correlated these
scores with the differences in the neural activity between the
groups (See Materials and methods and Fig. 4B). Our analysis
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Fig. 5. A) Cortical maps showing voxels that are significantly encoded [i.e. with a significant R2
adj score, p(FWER) < 0.05, minimum cluster-size >20 mm2]

by the fine-tuned models. Averaged R2
adjs are 0.37 (min–max range: 0.26–0.59) for CheatBERT/cheating group, and 0.35 (min–max range: 0.24–0.59) for

ParaBERT/paranoia group. For direct comparison between the fine-tuned models and the un-tuned BERT model, see Fig. S4. B) The accuracy scores map
of the encoder-based classification analysis. The map contains only significant voxels [p(FWER) < 0.05, minimum cluster-size >20 mm2].

revealed significant correlations (between r = 0.3 and r = 0.43,
p(FWER) < 0.05) in extensive brain areas, including the bilateral
TPJ, Precuneus, Premotor Cortex, STG, and Insula, as well as
in the right MTG, right Anterior Cingulate Cortex, and the left
Hippocampus (a total of 1,020 voxels, Fig. 6A and Table S2).
Importantly, running the same analysis with other combinations
of models (i.e. the pairs: BERT-CheatBERT, BERT-ParaBERT,
MedBERT-SpaceBERT, GunsBERT-MideastBERT) did not reveal
any significant correlation-maps (For BERT-ParaBERT, MedBERT-
SpaceBERT and GunsBERT-MideastBERT we found zero significant

voxels after correcting for multiple comparisons. For BERT—
CheatBERT we did find 30 significant voxels, but they did not
reach the cluster-size threshold.)

In the next analysis, we compared the difference in the repre-
sentation of each segment by ParaBERT and CheatBERT (cosine
dissimilarity vector, Fig. 4B) to the estimated change in interpre-
tation between listeners exposed to cheating or the paranoia
contexts (behavioral dissimilarity). Behavioral dissimilarity was
assessed using independent raters that assessed ‘how different
subjects in the cheating condition and in the paranoia condition
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Table 1. Brain regions that showed significant accuracy scores in the voxel-wise encoder-based classifier (the first analysis).

Coordinates

Region Hem. No. of Voxels Peak Accuracy score X Y Z

Precuneus Bilateral 243 0.85 −6 −60 39
Middle Frontal Gyrus Right 120 0.725 35 −4 41
Middle Frontal Gyrus Left 119 0.725 −31 15 43
Temporoparietal Junction Right 69 0.725 39 −67 35
Temporoparietal Junction Left 78 0.7 −42 −44 32
Middle Temporal Gyrus Right 15 0.775 58 −47 10
Middle Temporal Gyrus Left 67 0.7 −55 −52 3
Superior Temporal Sulcus Right 78 0.7 53 −39 13
Superior Temporal Gyrus Left 70 0.7 −53 −27 8
Ventrolateral Prefrontal Cortex Right 62 0.65 37 19 11

would interpret each segment’ (see Materials and methods and
Fig. 4B). The CheatBERT-ParaBERT distance scores were signifi-
cantly correlated with the behavioral scores (r = 0.31, P < 0.001). In
contrast, the correlations between the distances between control
models (i.e. the MedBERT-SpaceBERT distance and the GunsBERT-
MideastBERT distance) and the behavioral scores were signifi-
cantly lower (r = 0.15 and r = 0.08 for MedBERT-SpaceBERT and
GunsBERT-MideastBERT, respectively) and not significantly differ-
ent from zero (P > 0.05 for both, Fig. 6B).

Discussion
We presented a computational framework for modeling the effect
of listeners’ perspective, as defined by their thoughts, beliefs, and
knowledge, on the way they interpret the exact same lingual stim-
ulus. Recent research found similarities between word embedding
representations derived from DLMs and language-related signals
of the human brain (Huth et al. 2016; Jain and Huth 2018; Pereira et
al. 2018; Gauthier and Levy 2019; Schwartz et al. 2019; Caucheteux
et al. 2021; Goldstein et al. 2022a). Although word embedding rep-
resentations are sensitive to textual context (the representation of
a single word might be changed as a function of the other words in
the sentence) they are not sensitive to extratextual information,
such as the listener’s thoughts, beliefs, and prior knowledge (i.e.
the listener’s perspective). To bridge this gap, we proposed a com-
putational mechanism by which we create multiple word embed-
ding spaces, each suitable for language comprehension under a
different extratextual context. We suggested that among humans,
the extratextual context (i.e. the listener’s perspective) induces
transformations in the neural representation of the language,
and that the alternation between several carefully designed word
embedding spaces can model neural changes in human listeners
caused by different perspectives.

To create multiple word embedding spaces we collected a
dedicated dataset (Cheating/Paranoia/Natural stories) and used
it to fine-tune a well-established DLM, BERT (Devlin et al. 2018),
to fit either the ‘cheating’ or the ‘paranoia’ extratextual contexts.
We consistently showed that the fine-tuned DLMs (CheatBERT
and ParaBERT) better fit the neural responses of the subjects with
the corresponding perspective (Cheating vs. Paranoia). First, we
showed that we can use fine-tuned models’ word embeddings to
successfully predict the context in which a subject interpreted the
story (Figs. 4A and 5). Second, we found that the magnitude of
change in the representation of each segment between ParaBERT
and CheatBERT (measured via cosine dissimilarity) is correlated

with the magnitude of change in neural responses between the
cheating and the paranoia groups (Figs. 4B and 6A).

Besides the association with the neural data, we investigated
the differences between the word embedding spaces of Cheat-
BERT and ParaBERT and found that they are reasonably consis-
tent with the human perspectives. The cosine dissimilarity score
of each segment, as calculated between the fine-tuned models,
was not only correlated with the magnitude of change in the
neural responses (Figs. 4B and 6A) but also with the expected
level of difference in the interpretation, as rated by independent
raters (Fig. 6B). Moreover, we focused on the 20 most perspective-
affected segments and showed that their word representations,
especially the representations of a-priori-selected keywords, were
significantly changed between CheatBERT and ParaBERT, com-
pared to the other words in the story, as well as the other control
models’ representations (Fig. 3, Table S3). Taken all together, our
results demonstrate how aligning a continuous embedding space
to a specific context can provide a novel way of modeling listeners’
intrinsic perspectives.

It is important to emphasize that the fine-tuning process itself
does not necessarily reflect the way the brain switches between
internal representations, instead it is only our technical way to
induce the relevant embedding spaces. That is, we do not aim to
describe the way the embedding space should be changed, but
instead we argue that when the embedding spaces of DLMs are
properly tuned, they capture brain activity information about the
extratextual context, and this is an evidence of a potential cogni-
tive mechanism of handling such a context. Future work is needed
in order to model not just the differences between representations
(word embedding spaces), as we successfully demonstrated here,
but also the computational transformation that causes these
changes.

It should be also noted that when analyzing the differences
between the fine-tuned models using cosine dissimilarity
(Figs. 2, 4B, and 6), we must assume that the word embedding
vectors of the two models are directly comparable, despite the
fact that fine-tuning may arbitrarily alter the original meaning of
the embedding-space dimensions. The above results suggest that
this assumption holds in our study, as we show that these cosine-
dissimilarity scores are predictive of both the behavioral and the
neural data. Moreover, a careful analysis of the word embedding
representations of the Salinger’s story reveals that the vector
representations of the two fine-tuned models did not deviate
much from the representations of the original BERT model, in
terms of cosine similarity (The cosine-similarity scores between
CheatBERT’s and BERT’s representations were between 0.84
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Fig. 6. Results of the distance analysis. A) A correlation map showing voxels whose neural distances were significantly correlated with model distance
[p(FWER) < 0.05, minimum cluster-size >20mm2]. For several brain regions we plot the neural distance fluctuations as measured across segments
(maroon colored line), together with the models’ distances (gray colored line). A cross-correlation plot is attached to the plot of each of the regions
to visually indicate the signal-to-noise ratio Hipp = hippocampus. B) A bar-plot showing the correlations (Pearson’s r) between model distances—As
extracted from different pairs of models—And the behavioral scores. Below each bar is the corresponding cross-correlation plot. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.005, n.s. = non-significant (P > 0.05).

and 0.97; The cosine-similarity scores between ParaBERT’s
and BERT’s representations were between 0.78 and 0.94). This
implies that our fine-tuning process effectively preserved most
of the linguistic information and made only minimal changes
to the representations- changes that successfully captured the
variations in human perspectives. Lastly, even if we don’t assume

that the two models share the same space, we still consider
direct comparison between them to be reasonable, as we can
attribute the distance between the models’ representations to
the extent each model’s representation has changed with respect
to the original BERT. In other words, when the representation
of a word only undergoes minimal changes from the original
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BERT representation in both fine-tuned models (such as a neutral
word not related to cheating or paranoia), the distance between
the fine-tuned models for that word should also be minimal.
Conversely, the more relevant a word is to the cheating/paranoia
context, the more it deviates from the BERT representation,
leading to a greater likelihood of the new fine-tuned models’
representations being far apart from each other. Indeed, in our
study, the distances between the representations of the two
fine-tuned models are empirically correlated with the distances
between each fine-tuned model’s representations and the original
BERT’s representations. The correlation between the distance
scores of CheatBERT vs. ParaBERT and the distance scores of
CheatBERT vs. BERT was 0.58 (P < 0.001). Similarly, the correlation
between the distance scores of CheatBERT vs. ParaBERT and the
distance scores of ParaBERT vs. BERT was 0.69 (P < 0.001).

In this study, we implemented our fine-tuning procedure using
the BERT model, a classical model that was originally designed
to be trained via a two-stage procedure: pre-training followed by
fine-tuning. Although recent studies suggest that new models,
such as GPT-2 (Radford et al. 2019), that are based on a decoder
architecture, are more predictive of neural responses to language
stimuli than encoder-based models like BERT (Caucheteux et al.
2021; Schrimpf et al. 2021), the current methodological framework
of using fine-tuning is less compatible with decoder-based models
(Radford et al. 2019, Liu et al. 2021; Stylianou and Vlahavas 2021;
Winata et al. 2021; Wortsman et al. 2022). Indeed, our supple-
mentary analysis (Fig. S5) reveals that our results are successfully
replicated using a different encoder-based model (RoBERTa; Liu et
al. 2019) while they are replicated less successfully when applying
the fine-tuning procedure to the GPT-2 model.

From a computational point of view, the current study gives
a new perspective on the concept of fine-tuning. Usually, fine-
tuning is intended for improving the performance of the DLM in
downstream tasks, as text summarization, machine translation,
and so on. In other words, the fine-tuning stage creates a unique
and dedicated variant of the DLM for each downstream task (or
‘stimulus’). Here, however, we used a different logic: instead of
adopting a single model to a stimulus, we use fine-tuning to create
multiple models that will later be applied to model the same
stimulus (i.e. Salinger’s story) and examine differences in how
listeners with different perspectives perceive them. This approach
has a great advantage in cognitively motivated computational
modeling, since in real life, we may process the same stimulus
in different ways, depending on our given state-of-mind.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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