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SUMMARY
Surprise signals a discrepancy between past and current beliefs. It is theorized to be linked to affective ex-
periences, the creation of particularly resilient memories, and segmentation of the flow of experience into
discrete perceived events. However, the ability to precisely measure naturalistic surprise has remained
elusive. We used advanced basketball analytics to derive a quantitative measure of surprise and character-
ized its behavioral, physiological, and neural correlates in human subjects observing basketball games. We
found that surprise was associated with segmentation of ongoing experiences, as reflected by subjectively
perceived event boundaries and shifts in neocortical patterns underlying belief states. Interestingly, these ef-
fects differed by whether surprising moments contradicted or bolstered current predominant beliefs. Sur-
prise also positively correlated with pupil dilation, activation in subcortical regions associated with dopa-
mine, game enjoyment, and long-term memory. These investigations support key predictions from event
segmentation theory and extend theoretical conceptualizations of surprise to real-world contexts.
INTRODUCTION

As events in the world unfold, the brain rapidly adjusts its predic-

tions of what will happen next. Of course, our predictions are not

always correct—and when they are inaccurate, we often experi-

ence surprise (i.e., unsigned prediction error [PE]) (Jang et al.,

2019; Kutas and Hillyard, 1984; O’Reilly et al., 2013; Rouhani

et al., 2018, 2020). Surprise is theorized to be critical for learning

and memory (Rescorla and Wagner, 1972; Sinclair and Barense,

2018), updating our beliefs about the structure of the world (Sut-

ton and Barto, 1998), and demarcating events in the continuous

flow of time (Franklin et al., 2020). Moreover, although people

typically prefer certainty about outcomes that are instrumental

for survival (Bromberg-Martin and Hikosaka, 2009), in domains

with non-instrumental information, such as narratives, music,

and sports, people tend to prefer violations of their expectations

(Ely et al., 2015; Su-lin et al., 1997; Gold et al., 2019), suggesting

that surprise is often a rewarding affective experience.

Although surprise has been elegantly operationalized in labo-

ratory experiments, it is difficult to precisely characterize in more

naturalistic settings. Most experiments measure surprise in the

context of discrete temporal units (e.g., trials) involving repeated
sensory cues rather than as a probabilistic belief state that is

continuously updated over time (Hutchinson and Barrett,

2019). Here, we leveraged naturalistic stimuli (video clips of

basketball games) in which we could quantify how people

continuously update their predictions about an outcome (which

team will win).

First, we describe and validate our model of surprise. Then, we

show how surprise relates to perceived event boundaries, the

segmentation of neural event states, and pupil dilation. Finally,

we show that surprise predicts both subjective enjoyment and

neural signatures of reward and leads to improved long-term

memory for events.

RESULTS

Calculating and Validating Surprise during Basketball
Viewing
Twenty self-ascribed basketball fans (6 female) underwent eye

tracking and fMRI scans while watching the final 5 min of nine

games from the 2012 men’s National Collegiate Athletic Associ-

ation (NCAA) college basketball (March Madness) tournament

(Figure 1A). Subjects reported their preferred team (if any) and
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Figure 1. Experimental Procedure and Surprise Calculation and Validation

(A) Subjects undergoing eye tracking and fMRI viewed and recalled nine NCAA basketball games. The game screenshot is blurred here for copyright reasons.

(B) Model predicting win probabilities (color scale) based on the score difference (y-axis), time remaining (x-axis), team in possession of the ball, and relative

strength of the teams (not shown here; see text). Probabilities are plotted separately for when the home team possesses the ball (top) and when the visiting team

possesses the ball (middle), with the difference between these scenarios on the bottom.

(C) Model predictions for each possession corresponded tightly with those from an expert sports analyst in corpus data (top) and in games used in this experiment

(bottom).

(D) (Top) Win probabilities from the model chart the likelihood of one team winning across time points in the scanner (TRs). (Bottom) Surprise was defined as the

unsigned change in this time course.

(E) (Top) Subject predictions were tested on scenarios from different games given at the end of the experiment. (Bottom) Histogram showing that subject

predictions were correlated highly with predictions from the model. The vertical dashed line indicates the mean.

See also Figure S1.

ll
Article
enjoyment after each game and freely recalled the games from

memory after each set of three. We operationalized predictions

using a win probability model trained on a corpus of games

from the 2012 regular season that was based on four factors:

the difference in score between two teams (oriented as positive

when the home team was winning and negative when it was

losing), the amount of time remaining, which team was in
378 Neuron 109, 377–390, January 20, 2021
possession of the ball, and the relative strength of the two teams.

The model provided the win probability updated for each

possession based on similar game states in the corpus (Fig-

ure 1B; Figure S1). Score difference was the most important fac-

tor. Score difference and the team possessing the ball became

more important as time elapsed. Relative team strength factored

into the model by taking the expected score difference (from the
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public website of an expert basketball analyst, https://www.

kenpom.com/), dividing this by the total number of seconds in

the game (to get an estimate of how much the stronger team

was supposed to outscore the worse team, in units of points

per second), and multiplying by the number of seconds remain-

ing in the game; this approach assumed that the stronger team’s

score advantage accrued at a constant rate (e.g., if a team is

supposed to win by 20 points, that translates into an expected

10-point differential in each half; see STAR Methods for more in-

formation). We validated these predictions against those of the

expert basketball analyst on both a held-out subset of games

from the corpus (Figure 1C, top) and the tournament games

viewed in this experiment (Figure 1C, bottom).

One can think of each subject’s brain state over the course of

a game as traversing a state space of predictions about the

likely winner (Figures 1C and 1D). Our win probability measure

was computed so that it updated after each possession change

(i.e., after scores or turnovers—whenever the other team ob-

tained the ball). Consequently, we computed surprise as the

absolute value of the change in the win probability time course

at each possession boundary (Figure 1D). In other work, the

term ‘‘surprise’’ has been used to refer to PEs (differences be-

tween expected and actual moment-to-moment outcomes)

that can (Faraji et al., 2018), but do not always (O’Reilly et al.,

2013), lead to updates in one’s underlying beliefs about the

world. For the analyses reported here, we reserve the term

‘‘surprise’’ to refer to model-derived changes in estimated win

probabilities, which are reflected in subjects’ internal estimates

of win probability (as described later; we return to these points

in Discussion).

To validate that subjects represented these probabilities in

some form, we presented them at the end of the experiment

with a test featuring scenarios from different 2012 tournament

games that they had not previously viewed (Figure 1E). In this

test, subjects rated the likelihood that the home team would

win for every possession (starting with 5 min left) when given

the seeds of the teams, the score, the amount of time remaining,

and the team in possession of the ball. The distribution of prob-

abilities in this test closely resembled those from the viewed

games (Figure S1). Indeed, subject responses correlated

highly with the win probabilities specified by our algorithm

(mean r = 0.80, range = 0.68 to 0.91, p < 0.001) (Figure 1E), vali-

dating its use for approximating surprise.

Surprise Correlates with Subjective Event
Segmentation, the Segmentation of Neural States, and
Pupil Dilation
Event segmentation theory (EST) posits that humans naturally

segment their ongoing stream of experience and create internal

event models to predict upcoming events (Zacks et al., 2007,

2011). Violations of these predictions (i.e., surprises) are thought

to coincide with event boundaries, which are reflected in subjec-

tive segmentations of continuous perception (Zacks et al., 2011),

pronounced shifts in neural states (Baldassano et al., 2017), and

physiological changes such as pupil dilations (Braem et al., 2015;

Clewett et al., 2020; Filipowicz et al., 2020; Preuschoff et al.,

2011; Yu and Dayan, 2005). Here, we investigated how surprise

relates to these three measurements.
First, we wanted to examine how a separate group of basket-

ball fans perceived game events and how these judgments

related to surprise. These fifteen fans (8 female) watched the

games outside of the scanner and responded when they

perceived the ending and new beginning of game units at the

coarsest level that was meaningful to them (Newtson, 1973)

(see STAR Methods for instructions). Overall, subjects re-

sponded anywhere from 5 to 150 times (66.1 ± 11.7 times)

across the 9 games (Figure 2A). Based on these responses, we

computed a subjective boundary agreement score for each

possession boundary (e.g., score or change in possession),

quantifying the agreement across subjects (ranging from 0 for

no agreement to 1 for perfect agreement) that a game unit ended

within 2 s of that possession boundary. At each possession

boundary (157 total, across all 9 games), we therefore had a

measure of subjective boundary agreement, which we then

correlated (across the 157 possession boundaries) with model-

derived surprise. We tested this correlation against a

null distribution of permutations, in which we circularly shifted

surprise values across possessions within each game and then

concatenated all 157 values for each permutation. Partially

supporting the predictions from EST outlined earlier, subjective

boundary agreement showed a marginal correlation with sur-

prise (r = 0.29, p = 0.07) (Figure 2C).

We next intuited that although subjects can represent these

predictions in a graded fashion (Figure 1C), they could also

hold a binary belief about which team is more likely to win at

a particular moment (e.g., team X currently has a >50%

chance of winning) (Johnson et al., 2020). If so, there could

be a qualitative difference in surprise based on whether new

evidence is consistent with this belief (e.g., team X scores,

furthering its lead) or inconsistent with this belief (e.g., team

Y scores, cutting into team X’s lead). To explore this, we

created the constructs of belief-consistent surprise and

belief-inconsistent surprise (Figures 2B and 2C). Belief-consis-

tent surprise is equivalent to surprise if the change in win

probability involves the team with the higher win probability

becoming even more likely to win; it is zero otherwise.

Belief-inconsistent surprise is equivalent to surprise if the

change in win probability involves the team with the higher

win probability becoming less likely to win; it is zero otherwise.

We hypothesized that belief-inconsistent surprise would entail

more updating of one’s event model (i.e., one’s understanding

of what is happening) and thus—according to EST (Zacks

et al., 2007, 2011)—would be more likely to trigger segmenta-

tion (Figure 2B). To test this, we next correlated subjective

boundary agreement across possession boundaries sepa-

rately with belief-consistent and belief-inconsistent surprise

(Figure 2C). The correlation was significant for belief-inconsis-

tent surprise, but not belief-consistent surprise, and the two

significantly differed (inconsistent: r = 0.40, p < 0.001; consis-

tent: r = �0.03, p = 0.10; difference: r = 0.43, p < 0.001, via

permutation tests circularly shuffling possessions within each

game). Altogether, these results suggest that event segmenta-

tion marginally increases with surprise and that rather than

simply demarcating bidirectional probabilistic changes in

belief, segmentation is especially robust when new informa-

tion conflicts with the predominant belief.
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Figure 2. Perceived Event Boundaries Correlate with Surprise

Measures

(A) Each subject’s annotations demarcating game units are shown in rows

(black ticks) amid actual possession boundaries for one game (gray). Subjects

making the annotations were from a separate cohort.

(B) Hypothetical examples show how belief-consistent surprise and belief-

inconsistent surprise were calculated.

(C) (Left) Subjective boundary agreement (the proportion of subjects who

marked an event boundary at each possession boundary) is plotted for one

game against win probability for the home team, surprise, belief-consistent

surprise, and belief-inconsistent surprise at those boundaries. (Right) Sub-

jective boundary agreement was marginally correlated with surprise and

significantly correlated with belief-inconsistent surprise. Black dots indicate

true values versus smoothed null distributions in gray.

y0.05 < p < 0.10. **p < 0.01.
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We next attempted to capture signatures of the segmentation

of continuous experience in neural data, leveraging hidden Mar-

kov models (HMMs) to analyze blood-oxygen-level-dependent

(BOLD) responses in fMRI (Baldassano et al., 2017; Chang

et al., 2018). HMMs are data-driven algorithms that probabilisti-

cally segment data into stable states and discrete shifts between

those states. We used a specialized HMM variant developed by

Baldassano et al. (2017) that is optimized for event segmentation

(i.e., identifying jumps in neural patterns). This HMM variant as-

sumes that the neural time series can be modeled by transition-

ing through some number of discrete states, never returning to

previous states (Baldassano et al., 2017). Here we used HMMs

to address three questions: First, do HMM state transitions natu-

rally align with actual game possession boundaries? Second,

following from the hypothesis that surprise leads to event seg-

mentation, does surprise predict more frequent HMM state tran-

sitions across possessions and does greater cumulative surprise

lead to more neural event states across games? Finally, are

HMM state transitions more likely to occur at moments of

belief-inconsistent or belief-consistent surprise? We addressed

these questions using neural activity from primary visual cortex

(V1), precuneus, and medial prefrontal cortex (mPFC) as a priori

regions of interest (ROIs) (Figure 3A). We predicted that V1would

mainly track small-timescale changes with salient sensory fea-

tures (Baldassano et al., 2017; Lerner et al., 2011), like posses-

sion changes, but could also be modulated by top-down pro-

cesses (Hindy et al., 2016; Hutchinson and Barrett, 2019). For

precuneus, a node in the default mode network, we predicted

that state changes would occur on a longer timescale and reflect

subjective segmentations (as was found previously in Baldas-

sano et al., 2017) and that these state changes would occur

more frequently with greater surprise. Finally, we predicted

that representations in mPFC, a higher-level region involved in

abstract inference and the representation of abstract states

(Hampton et al., 2006; Starkweather et al., 2018; Takahashi

et al., 2011; Wilson et al., 2014), would exhibit state changes

on the longest timescale and would occur more frequently with

higher surprise, reflecting shifts in the broader narrative of the

game. We also predicted that correlations between neural state

changes in higher-order areas (precuneus and mPFC) and sur-

prise would be largest when we focus on belief-inconsistent

(versus belief-consistent) surprise for the reasons noted earlier:

Belief-inconsistent surprise entails a greater update to one’s

event model and thus should be more likely to trigger

segmentation.

To address the first question (i.e., do HMM state transitions

naturally align with actual game possession boundaries?), we

first calculated (for each ROI and for each time point) HMM state

transition agreement, operationalized as a single value repre-

senting the proportion of subjects showing at least one HMM

state transition within a 15-s window (±7 s) of each time point.

We then correlated this across-subject measure with the true

time course of possession changes, and we compared this to

two distinct kinds of null distributions: one in which we shuffled

possession order within games (preserving possession length)

and one in which we circularly shifted time courses within games

(preserving the temporally autocorrelated structure of posses-

sion boundaries). In agreement with our prediction, the time
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Figure 3. Surprise Predicts Neural Event Boundaries

(A) V1 (top), precuneus (middle), and mPFC (bottom) ROIs are shown.

(B) (Left) For each ROI, the figure shows representative correlation matrices (for a single game and single subject), indicating the similarity between spatial

patterns of activity in that ROI for every pair of TRs (the diagonal is trivially 1, because it plots the similarity of each TR to itself). White boxes show groups of TRs

that were identified by our hidden Markov model (HMM) analysis as belonging to the same event. Actual possession boundaries are shown in red. (Right)

Correlations between the time series of HMM state transitions and the time series of true possession boundaries are plotted (dark circles) and compared with null

distributions. This relationship was highest in V1.

(C) Correlations across games (dots) show the number of states per minute in each region versus surprise per minute (left), which was significant in mPFC and

precuneus (right).

(D) Across possession boundaries, HMM state transition agreement (the proportion of subjects showing an HMM state transition in the time window around the

boundary) was correlated against surprise, belief-consistent surprise, belief-inconsistent surprise, and subjective boundary agreement for each ROI and

compared with null distributions. Surprise was significantly (positively) correlated with HMM state transition agreement in mPFC. Belief-inconsistent (but not

belief-consistent) surprise was also significantly correlated with HMM state transition agreement in V1, precuneus, and mPFC. Subjective boundary agreement

correlated significantly with HMM state transition agreement in V1 and precuneus.

y0.05 < p < 0.10. *p < 0.05. **p < 0.01. See also Figure S2 and Table S1.
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course of neural state transitions in V1 was significantly corre-

lated with the time course of ground-truth possession changes,

which involve substantial changes in visual features (r = 0.25, p <

0.001, via permutation tests shuffling possession order; p <

0.001, via permutation tests with circular shifts) (Figure 3B).

This effect was significant in precuneus (r = 0.084, p = 0.003

by shuffling possessions, p = 0.04 by circular shift) and margin-

ally significant in mPFC (r = 0.075, p = 0.06 by shuffling posses-

sions, p = 0.07 by circular shift); the effect was also significantly

weaker in those regions than in V1 (r difference, V1� precuneus:

r = 0.16, p = 0.04; V1 � mPFC: r = 0.17, p = 0.007).

Next, we asked whether surprise is associated with a greater

number of neural event states, both across games and across

possessions. Across games, we correlated the mean surprise

per minute in each game and the cross-validated best-fitting
number of states per minute (averaged across subjects) within

each ROI. This relationship was significant in precuneus

(r = 0.79, p = 0.007) andmPFC (r = 0.68, p = 0.04, via permutation

tests shuffling games), but in V1 this was not significant

(r = �0.37, p = 0.34) and was significantly lower than in mPFC

(r difference = 1.05, p = 0.03) and precuneus (r difference =

1.16, p = 0.015) (Figure 3C). Observed representational shifts

did not correlate with potential confounding factors such as

the number of possessions per minute (precuneus: r = �0.38,

p = 0.31; mPFC: r =�0.23, p = 0.53) or the total amount of visual

motion per minute (precuneus: r = 0.15, p = 0.70; mPFC: r = 0.24,

p = 0.53). Moreover, the relationship with mean surprise per min-

ute remained significant or marginally significant in a regression

model controlling for these factors in precuneus (p = 0.03, via

permutation tests shuffling games) and mPFC (p = 0.07).
Neuron 109, 377–390, January 20, 2021 381
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To investigate the effects of surprise at the finer temporal res-

olution of possessions, we calculated HMM state transition

agreement for each possession boundary, operationalized as

the proportion of subjects showing at least one HMM state tran-

sition in the 15-s window spanning the possession boundary

(±7 s around the boundary). At each possession boundary (157

total, across all 9 games), we therefore had a measure of HMM

state transition agreement, which we correlated (across the

157 possession boundaries) with model-derived surprise; we

tested this correlation against a null distribution of permutations,

in which we circularly shifted surprise values across possessions

within each game before concatenating them. In contrast to the

first analysis in this section, which looked at whether HMM state

transitions were more likely to occur at possession boundaries

(versus other time points), this analysis zooms in on possession

boundaries and asks whether the occurrence of HMM state tran-

sitions at these time points is modulated by surprise. We found

that the correlation between HMM state transition agreement

at possession boundaries and surprise was significant in

mPFC (r = 0.27, p = 0.028), but this relationship was not signifi-

cant in V1 (r = 0.08, p = 0.19) or in precuneus (r = 0.23, p =

0.12) (Figure 3D) (all r differences between ROIs, p > 0.4). There-

fore, mPFC pattern shifts occur more frequently with greater

surprise.

As noted earlier, we also predicted that (across possession

boundaries) HMM state transition agreement in mPFC and

precuneus would correlate better with belief-inconsistent sur-

prise than belief-consistent surprise. Consistent with this pre-

diction, correlations were significant for belief-inconsistent

surprise in all three regions (precuneus: r = 0.26, p = 0.008;

mPFC: r = 0.29, p = 0.004; V1: r = 0.13, p = 0.03; all r differ-

ences between ROIs, p > 0.47). None of the regions showed

a significant correlation for belief-consistent surprise (V1: r =

�0.03, p = 0.49; precuneus: r = 0.025, p = 0.51; mPFC: r =

0.046, p = 0.83; all r differences between ROIs, p > 0.72),

and there was a significant difference between the correlations

for belief-inconsistent and belief-consistent surprise in precu-

neus (r = 0.23, p = 0.047) and mPFC (r = 0.25, p = 0.047), but

not V1 (r = 0.16, p = 0.11) (all r differences between ROIs for

this measure, p > 0.77) (Figure 3D). Altogether, these results

accord with neural predictions of EST (Zacks et al., 2007,

2011), specifically that surprising outcomes—especially those

that counter one’s current belief and thereby increase uncer-

tainty—coincide with resetting neural representations in

higher-level brain regions (e.g., precuneus and mPFC) that

are involved in event processing (Nassar et al., 2019; Shin

and DuBrow, 2020).

Finally, we asked whether HMM state transition agreement

correlated with subjective boundary agreement (computed in

our non-fMRI subjects) concatenated across 157 possessions,

given that both measures correlated with surprise (and specif-

ically belief-inconsistent surprise). We found that HMM state

transition agreement in precuneus (r = 0.34, p < 0.001) and V1

(r = 0.26, p < 0.001) correlated with subjective boundary agree-

ment, whereas HMM state transition agreement in mPFC did

not (r = 0.01, p = 0.72) (r difference, V1 � precuneus: r =

�0.07, p = 0.75; V1 � mPFC: r = 0.25, p < 0.001; precuneus �
mPFC: r = 0.32, p < 0.001).
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Altogether, neural states in these three regions appear to

change on different timescales, and they are most strongly

modulated by different variables. V1 state changes occur rapidly

and track possession boundaries significantly better than the

other two regions; V1 state changes also track belief-inconsis-

tent surprise and subjective boundary agreement. Precuneus

state changes occur at a more moderate rate. Like V1, precu-

neus state changes track belief-inconsistent surprise and sub-

jective boundary agreement; the latter finding conceptually rep-

licates the results of two previous studies that used narrative

movie stimuli (Baldassano et al., 2017; Zadbood et al., 2017).

Lastly, mPFC changes occur sparsely (less than once per min-

ute), but they also occur preferentially at surprising moments

and more often when events conflict with the current belief;

mPFC changes were not significantly related to subjective event

boundaries (perhaps because of a timescale mismatch, mPFC

state changes, with an average of 2.5 transitions per game,

occurred less frequently than subjective event boundaries, with

an average of 7.3 per game). The overall pattern of effects in

mPFC is consistent with mPFC changing its state during mo-

ments of behavioral uncertainty (Karlsson et al., 2012) or salient

changes in environmental structure (d’Acremont et al., 2013;

Durstewitz et al., 2010; Nassar et al., 2019).

In addition, we performed exploratory analyses asking how

HMM state transitions correspond to the preceding surprise

measures in other parts of the neocortex by repeating these

across-possession analyses in 48 bilateral cortical parcels

from the Harvard-Oxford Brain Atlas (Figure S2, full details in Ta-

ble S1). These results were largely consistent with those given

earlier: The paracingulate cortex parcel, which best overlaps

our mPFC ROI, was among the regions showing the strongest

correlations for both surprise (r = 0.235, p = 0.02, via permutation

tests shuffling possessions; after three other parcels) and belief-

inconsistent surprise (r = 0.26, p = 0.01; after seven other par-

cels). The precuneus parcel showed strong correlations with

belief-inconsistent surprise (r = 0.27, p = 0.002; after five other

parcels) and subjective boundary agreement (r = 0.24, p <

0.006; after nine other parcels).

Previous accounts have linked event segmentation and sur-

prise with pupil dilation (Braem et al., 2015; Clewett et al.,

2020; Filipowicz et al., 2020; Preuschoff et al., 2011; Yu and

Dayan, 2005), which we investigated next. There are challenges

analyzing pupil dilation with video stimuli, because pupil area

measurements with conventional eye trackers differ with the

gaze location of the eye (Hayes and Petrov, 2016), decrease

with global and local visual luminance (Page, 1941), and increase

with salient sounds (Nassar et al., 2012). We addressed the first

challenge by normalizing the measurements within x- and y-co-

ordinate bins according to the gaze location (Figure 4A). We ad-

dressed the second and third challenges by including the

following sensory variables (computed for each second of the

game broadcast) in a linear model relating surprise to pupil dila-

tion: global luminance of the entire video, local luminance sur-

rounding the eye location, and the auditory envelope from the

broadcast (Figure 4B). In addition, we created regressors for

the following: global and local videomotion based on the change

in pixel-by-pixel luminance across video frames, the funda-

mental frequency (f0) of the commentator’s speech to capture
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Figure 4. Surprise Increases with Pupil Dilation across Possession Boundaries

(A) Confounds because of gaze location were addressed by splitting the screen into x- and y-coordinate bins and norming the raw pupil area values within

each bin.

(B) (Top left) Luminance for each TR was calculated as an average for the entire screen (global luminance), as well as for a 2� radius around the current location of

the eye (local luminance). (Bottom left) Motion was defined as the change in luminance. (Top right) auditory envelope was averaged within each TR based on the

broadcast volume. (Bottom right) These variables, along with vocal pitch, were included as sensory regressors in analyses related to pupil area changes.

(C) Pupil area (averaged for each TR) increased after possession changes, with the solid line and error bars indicating across-subject mean ± SEM and dashed

lines indicating each subject. Pupil area change, computed by subtracting a post-possession (0 to 2 s) minus pre-possession (�6 to �2 s) period, significantly

increased across the boundary.

(D) Variables entering a mixed-effects model are shown for one subject. We found that surprise significantly predicted pupil area change.

(E) Separate models run at each time point revealed that surprise predicted pupil area from 0–5 s. Error bars indicate the standard error in the beta estimate.

y0.05 < FDR-corrected q < 0.10. *FDR-corrected q < 0.05. **FDR-corrected q < 0.01. See also Tables S2 and S3.
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changes in prosody, the amount of game remaining based on the

game time at the start of the possession, and the position of the

ball in the telecast (right or left side of the court).

As expected, subjects’ pupils dilated following possession

changes (p < 0.001) (Figure 4C). More importantly, if pupil dilation

reflects event segmentation, pupil dilation across an event

boundary should scale with surprise at that boundary. To

address this, we asked how surprise, along with the preceding

regressors, predicted pupil area change across possession
boundaries from all games using a linear mixed-effects model

with the subject as a random effect. In line with EST, surprise

significantly predicted pupil dilation (p < 0.001) (Figure 4D; see

Table S2 for full details). In addition, both luminance metrics

negatively and the auditory envelope positively predicted dila-

tion. Pupil area change also increased with less time remaining

(toward the end of the game). The relationship between surprise

and pupil dilation was still significant when we performed a boot-

strapping analysis meant to reduce the influence of outlier
Neuron 109, 377–390, January 20, 2021 383
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Figure 5. Surprise Correlates with Neural Activity in Reward-Related Regions

(A) NAcc and VTA ROIs.

(B) Depictions for one game of different models included in general linear model (GLM) analyses for how surprise relates to neural activity in reward-related

regions. For all games, we modeled (unsigned) surprise and signed surprise (signed for games with a preference).

(C) NAcc responded marginally in a signed fashion to positive events (left). The VTA responded positively to both unsigned surprise and signed surprise (right).

Horizontal lines delineate data quartiles.

yp = 0.05. **p < 0.01. See also Figures S3 and S4 and Table S4.
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subjects (p = 0.01; see STARMethods). Given the significance of

surprise in this analysis, we ran a follow-up model looking sepa-

rately at belief-consistent and belief-inconsistent surprise with all

other regressors (except surprise); we did not have an a priori hy-

pothesis about how these subtypes of surprise would relate to

pupil dilation. We found that both belief-consistent and belief-

inconsistent surprise significantly predicted pupil area change

(p < 0.001, Bonferroni corrected, in both cases; see Table S2

for uncorrected values). We also reran mixed-effects models

for surprise against pupil area (rather than pupil area change)

at each time point (Krishnamurthy et al., 2017). We found that

surprise predicted pupil area between 0 and 5 s after the posses-

sion change (q < 0.05, false discovery rate [FDR] corrected)

(Figure 4E; see Table S3 for all time points). Altogether, these re-

sults suggest that pupil dilation modulations reflected surprise

across possessions.

Surprise Correlates with Enjoyment and Neural Activity
in Reward-Related Regions
We next examined whether and how surprise relates to subjec-

tive enjoyment and activity in neural regions associated with

reward. Casual fans typically prefer games with high uncertainty

and surprise to combat boredom (Su-lin et al., 1997; Peterson

and Raney, 2008). In many circumstances, subjects find tasks

to be less boring when events are not perfectly predictable

(Geana et al., 2016; Wilson et al., 2019). Accordingly, subjects’

enjoyment ratings given after each game correlated significantly

with that game’s mean level of surprise (r = 0.82, p = 0.007) (Fig-

ure S3), aswell as the standard deviation of surprise values in that

game (r = 0.92, p < 0.001). We also asked whether subjects

valued surprise in the absence of direct experience; that is, would

they be more excited to watch games expected to contain more

surprise? At the end of the experiment, subjects rated their

excitement towatch games from the following year’s tournament

(2013), starting from 5 min remaining. We computed future ex-

pected surprise for each of these games by finding games from

the 2012corpus that had similarwin probabilities at 5min remain-

ing and then summed the total amount of surprise remaining in

those games. All subjects preferred watching games with higher
384 Neuron 109, 377–390, January 20, 2021
expected surprise in the future (mean r = 0.61, range = 0.10 to

0.93, p < 0.001) (Figure S3). Thus, viewers appear to value both

the experience and the expectation of surprise.

In addition to considering enjoyment across a full game, we

also investigated the neural effects of surprise on a shorter time-

scale. Reward signals are intimately linked with the activity of

dopamine neurons in regions of the brainstem such as the

ventral tegmental area (VTA), as well as targets of those neurons,

particularly the nucleus accumbens (NAcc). Classically, the VTA

(D’Ardenne et al., 2008; Schultz et al., 1997) and NAcc (Cikara

et al., 2011; Gold et al., 2019; Rutledge et al., 2010) respond

strongly when rewards are larger or earlier than expected (i.e.,

reward prediction errors [RPEs]). However, the VTA can respond

more broadly to variables other than reward (Engelhard et al.,

2019), including sensory PEs (Howard and Kahnt, 2018; Iglesias

et al., 2013; Takahashi et al., 2017), unexpected events (Barto

et al., 2013; Kafkas and Montaldi, 2015), aversive PEs (Matsu-

moto et al., 2007), changes in hidden belief states (Nour et al.,

2018; Starkweather et al., 2018), reward expectation (Kim

et al., 2016; Totah et al., 2013), advance information (Brom-

berg-Martin andHikosaka, 2011), and stimulus-stimulus learning

(Sharpe et al., 2017), all in the absence of (or controlling for)

reward.

Subjects reported having a team preference in approximately

half of the games (48% ± 6%) (Figure S3). Therefore, in addition

to looking at unsigned surprise in all games, for games with a

stated team preference, we could ask whether neural activity

was modulated by the valence of the outcome, or signed sur-

prise. We characterized NAcc and VTA activity (Figure 5A) using

general linear models (GLMs) with regressors for surprise and

signed surprise (Figure 5B). These time courses involve mostly

zeros with occasional punctate surprise events, meaning that a

physiological process that responds uniformly to any surprise

or signed surprise event (i.e., not in a graded fashion) could

have a positive relationship. Therefore, we also created binarized

versions of the surprise and signed surprise time courses to cap-

ture processes that respond to surprise but do not track the

magnitude of surprise (Leong et al., 2017) (Figure S4). Based

on the findings reviewed earlier, we predicted that the NAcc
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Figure 6. Effects of Surprise and Physio-

logical and Neural Factors on Memory

(A) Sample recall of a specific possession, and

distribution (across subjects) of the number of

possessions that were remembered. The vertical

dashed line indicates the mean.

(B) Transitions between successively recalled

possession memories showed that subjects

overwhelmingly recalled possessions in a for-

ward manner from possession to possession.

Error bars represent SEM.

(C) Schematic of factors that predictedmemory in

a mixed-effects logistic regression model. A

range of variables predicted memory for pos-

sessions, including pupil area increases leading

into a possession, subject expertise, (indepen-

dently rated) oddness of a possession, and sur-

prise at the end of a possession.

All of these significant relationships were in the

positive direction. See also Figure S5 and

Table S5.
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would respond to RPEs (signed surprise), whereas the VTA could

respond to RPEs and/or more broadly to unsigned surprise. In

NAcc, activity showed a marginally significant correlation with

signed surprise (p = 0.056, t test of GLM betas against zero)

but not unsigned surprise (p = 0.61), providing trend-level sup-

port for the standard RPE model (Figure 5C) (see Table S4 for

full results). By contrast, a more complex pattern emerged

from VTA, which responded significantly to unsigned surprise

(p = 0.002) and to signed surprise (p = 0.009). To follow up on

the significant finding between surprise and VTA activity, we

ran another model replacing surprise with belief-consistent and

belief-inconsistent surprise; we did not have an a priori hypothe-

sis about how these subtypes of surprise would relate to VTA

activity. We found that belief-consistent surprise (p = 0.01,

Bonferroni corrected) significantly predicted VTA activity and

belief-inconsistent surprise showed a trend toward predicting

VTA activity (p = 0.08, Bonferroni corrected) (see Table S4 for un-

corrected values). Altogether, we obtained trend-level support

for the classic finding that NAcc responses correlate with RPEs

using a passively viewed naturalistic stimulus, whereas VTA re-

sponses showed a classic RPE response and correlatedwith un-

signed naturalistic surprise.

Surprise and Pupil Area Change Positively Predict
Memory for Possessions
Numerous studies have found that the segmentation of ongoing

experience into discrete events plays a powerful role in orga-

nizing memories (Clewett et al., 2019; DuBrow and Davachi,

2013, 2014, 2016; Ezzyat and Davachi, 2011) and enhances

memory for information near event boundaries (Clewett et al.,

2019; Newtson and Engquist, 1976; Rouhani et al., 2020; Swal-

low et al., 2009). Given that surprise helps create event bound-
aries (Franklin et al., 2020) and enhances memory in laboratory

settings (Jang et al., 2019; Pine et al., 2018; Rouhani et al.,

2018, 2020), we asked how surprise and other factors described

earlier predict long-term memory in our naturalistic paradigm.

We assessed memory by computing the number of posses-

sions subjects recalled with enough specific details that they

could be readily identified by an independent rater (Figure 6A).

Overall, subjects recalled few possessions (12.0 ± 2.8 of 157

possessions), likely because of high interference given the

similar content in each clip. In addition, subjects’ recall showed

temporal contiguity with a powerful forward asymmetry (Heusser

et al., 2020; Howard and Kahana, 2002): all recalls transitioned in

the forward direction (i.e., if subjects just recalled a possession,

the next possession they recalled was from later in the game),

and more than 50% of the total transitions were to the next

possession (Figure 6B; see Figure S5 for a sample subject).

Theoretically, surprise and other factors occurring at posses-

sion boundaries could affect memory for the upcoming

possession or memory for the possession just completed, that

is, proactive or retroactive enhancement, respectively. Our first

prediction was that surprise at the end of the possession would

influence memory. This prediction is based on prior studies that

found a relationship between neural activity at the end of an

event and subsequent memory for the just-completed event

(Baldassano et al., 2017; Ben-Yakov et al., 2013). Indeed,

when we took the memorability of each of the 157 possessions

(i.e., the average number of participants recalling that posses-

sion) and correlated it with end-of-possession surprise, the cor-

relation was significant (r = 0.34, p < 0.001, via permutation tests

circularly shuffling possessions within each game).

The VTA has been linked to storage of long-term episodic

memories (Adcock et al., 2006), and peak VTA activation could
Neuron 109, 377–390, January 20, 2021 385
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predict trial-by-trial memory for the just-ending possession (Fig-

ure S6). However, surprise and/or other factors leading into the

possession could also influence memory for subsequent events.

For instance, surprise reorients attention (Itti and Baldi, 2009)

and increases subsequent learning rates (Courville et al., 2006;

Pearce and Hall, 1980); a recent study also found that PE shifts

hippocampal connectivity in a manner that should upregulate

encoding (Bein et al., 2020). Pupil dilations also predict higher

learning rates (Browning et al., 2015; Nassar et al., 2012; Silvetti

et al., 2013). As such, many factors could influence long-term

memory for events in the game.

We thus submitted the preceding factors to amixed-effects lo-

gistic regression model predicting possession memory. We

looked at memory for each possession, including separate ver-

sions of these factors for the boundary going into the current

possession and the boundary at the end of the possession

(e.g., we used both surprise at the start of a possession and sur-

prise at the end of the possession as separate predictors of

memory for that possession). Significant results are shown sche-

matically in Figure 6C, and the full results are detailed in

Table S5.

Critically, pupil area changes across the prior possession

boundary predicted subsequent memory for the upcoming

possession, in line with attentional reorienting and/or an

increased learning rate. VTA activity did not predict memory.

Surprise at the end, but not the beginning, of the possession pre-

dicted memory for the possession. The relationship between

end-of-possession surprise and memory was still significant

when we performed a bootstrapping analysis meant to reduce

the influence of outlier subjects (p < 0.001; see STAR Methods).

In addition, we included the following factors, all of which pre-

dicted memory individually and in the full model: subject exper-

tise, based on the number of games watched across one’s life-

time, highlighting the importance of domain expertise for

memory (Chi, 1978); the oddness of a possession, based on an

independently rated assessment of unusual basketball plays

(e.g., a lane violation during a critical free throw), which could in-

dex surprise in amanner not captured by our simplifiedwin prob-

ability metric; and inspired by the temporal contiguity effects de-

picted in Figure 6B, whether the previous possession was

recalled. Given that surprise at the end of the possession pre-

dictedmemory, we also ran a follow-upmodel removing surprise

at the end of the possession and including belief-consistent and

belief-inconsistent surprise; we did not have an a priori hypothe-

sis about how these subtypes of surprise would relate to mem-

ory. We found that both significantly predicted memory (p <

0.01, Bonferroni corrected) (see Table S5 for uncorrected

values). Altogether, these results capture complex, multifaceted

aspects of real-world memory and highlight the importance of

surprise, among other associated factors, in shaping those

memories.

DISCUSSION

Our findings reveal that the popular activity of competitive sports

viewing is an example of naturalistic surprise, and our analyses

of this task led to multiple behavioral and physiological discov-

eries in support of the tenets of EST (Franklin et al., 2020; Zacks
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et al., 2011). Namely, surprises appear to strongly coincide with

the segmentation of internal event representations, indexed by

increased subjective perception of event boundaries, increased

pupil dilation, an increased likelihood of significant neural repre-

sentational shifts (as measured using a HMM), and increased

subsequent memory for events.

Further results provide evidence for reinforcement learning

models of RPEs in a naturalistic, passive-viewing setting. In the

NAcc, we observed a trend toward classic RPE (signed surprise)

effects, reflecting dynamic changes in the probability that a

preferred team would win a basketball game (Cikara et al.,

2011). In the VTA, we also found classic RPE effects, as well

as activity correlated with unsigned updating of beliefs, extend-

ing previous work on the VTA to a naturalistic setting (Howard

and Kahnt, 2018; Sharpe et al., 2017; Starkweather et al.,

2017, 2018; Takahashi et al., 2017). Finally, in showing that sur-

prise correlates with subjective enjoyment, we provide support

for the intriguing idea that when information is not instrumental

for survival, humans may prefer unpredictable scenarios (Ely

et al., 2015; Geana et al., 2016).

Importantly, our approach illustrates a dissociation of surprise

effects based on whether they bolstered or contradicted the pre-

dominant belief in who would win. Belief-inconsistent surprise—

which also leads to a game state of higher uncertainty (Nassar

et al., 2019; Shin and DuBrow, 2020)—was a significantly better

predictor of subjective event boundaries than belief-consistent

surprise. Furthermore, transitions between neural states in pre-

cuneus and mPFC were significantly correlated with belief-

inconsistent surprise, but not belief-consistent surprise, and

the correlation with belief-inconsistent surprise was larger than

the correlation with belief-consistent surprise for both regions.

Contrary to our results showing a distinction between belief-

inconsistent and belief-consistent surprise, measures such as

pupil dilation, activity in VTA, and memory showed significant

or trending effects for both belief-consistent surprise and

belief-inconsistent surprise. Ultimately, different flavors of sur-

prise have different behavioral, physiological, and neural out-

comes, demonstrating that individuals’ predictions may have

both a binary aspect (i.e., which team will win?) and a probabi-

listic one (i.e., how likely is it?) (Johnson et al., 2020). These dis-

crepancies raise questions about how and where these two pu-

tative aspects of predictions diverge, opening avenues for future

research.

Here we have defined surprise as a change in the estimated

outcome of the game. This definition appears on its surface to

conflict with definitions used in a prior report (O’Reilly et al.,

2013), which designated events that signal updates to an under-

lying probability distribution as model updates and errors in pre-

dicting moment-to-moment events as surprises. We agree that

surprise can reflect expectation violations stemming from

momentary events. In a basketball game, that could take the

form of a player making a truly spectacular and improbable

shot, which might incidentally have the same influence on win

probability (and therefore our measure of surprise) as a regular

shot. However, we argue that higher-level updates about the

world (e.g., who will win the game) can also be surprising. For

instance, making a 3-point shot that increases a team’s likeli-

hood of winning by 79% is far more surprising (in the common-
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use sense of the term) than an identical play that only increases

the likelihood by 12%, even though the likelihood of the event

(e.g., making the 3-point shot) is identical; most sports fans

would characterize these kinds of major shifts in win probability

as surprising, and they are typically accompanied by strong

emotion (e.g., shock, elation, or disappointment). We use the

term ‘‘surprise’’ here to underscore the point that updating an in-

ternal belief state by a large amount at a single time point likely

shares many subjective features with witnessing an improbable

momentary event; in both cases, there is a discrepancy between

what one previously believed would happen (e.g., that team A

would win the game; that the shot would not go into the basket)

and what follows (now you think team B will win; you see the ball

go in the basket).

Another key conceptual issue is whether surprise, as defined

earlier, should be viewed as a construct in the world (i.e., a

change in the likelihood of one team winning, according to the

mathematical model devised by the experimenters) or a

construct in the subject’s mind (i.e., a change in the subject’s

belief about which team will win). Although these are clearly

distinct concepts, we believe that they coincide in our study.

That is, our approach is based on the hypothesis that our

(basketball-savvy) subjects have a predictive model in their

head that corresponds to the model that we (the experimenters)

are using to predict the outcome of the game—as such, mo-

ments when our regression model shows a change in the win

probability correspond to moments when subjects show a

change in their (internal) win probability model. This hypothesis

could be incorrect, but the strong correspondence between

the predictions of our win probability model and observed neural,

behavioral, and physiological data lends converging support to

this hypothesis.

A related conceptual issue is the relationship between sur-

prise, as defined earlier, and event segmentation. EST (Zacks

et al., 2011) and related perspectives (Clewett et al., 2019;

Franklin et al., 2020; Shin and DuBrow, 2020) posit a cascade

of cognitive processes that occur when you make observa-

tions that are incompatible with your current understanding

of the world (e.g., flushing of your current representation of

the situation or loading up of a new and more suitable predic-

tive model). In these models, the process of event segmenta-

tion starts when your current understanding of the world is de-

stabilized by a new observation and ends when you settle on a

new understanding. Viewed from this perspective, high levels

of surprise (defined here as substantial changes in the sub-

ject’s belief about the game outcome) and event segmenta-

tion are two sides of the same coin. When we say that an

event is highly surprising, this refers to the substantial change

in belief triggered by the new observation, and the term ‘‘event

segmentation’’ refers to the underlying cognitive machinery

that supports this change in belief. In our study, we operation-

alized event segmentation by having subjects press a button

when they thought one meaningful unit ended and the other

began (Newtson, 1973). We believe that subjects followed

these instructions by noticing when their internal belief state

changed and then pressing the button, so by this logic,

noticing the surprise (the change in beliefs) prompted subjects

to make a button press.
Lastly, one noteworthy aspect of our investigation is that the

probabilistic predictions derived from our model can be vali-

dated behaviorally (as shown in our prediction test) (Figure 1E).

We speculate that similar latent belief states underlie people’s

responses to real-world events in other domains, including fic-

tion, film, and the news—people are elated (or dismayed) in pro-

portion to their surprise at breaking-news stories or sudden

narrative swings and are more likely to consume exciting forms

of media with many twists and turns. Moreover, people’s

longest-lasting memories are formed in precisely those mo-

ments when their beliefs substantially shift. Future studies

should continue to leverage naturalistic stimuli with quantifiable

latent variables to investigate how humans respond to their

ever-changing world.
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, James

Antony (jantony@princeton.edu).

Materials Availability
The basketball videos have restrictions due to copyright reasons. However, much of the metadata, including everything used for the

analyses herein, are included with the openly available data (see ‘‘InGameVars.xls’’). Please e-mail the Lead Contact for other infor-

mation about the materials.

Data and Code Availability
All code and data from this project are openly available upon publication on Princeton’s Dataspace: https://doi.org/10.34770/r8b8-

k094. Neuroimaging data are on OpenNeuro.org in the brain imaging data structure (BIDS) format amenable to meta-analyses and

reproducible neuroscience: https://openneuro.org/datasets/ds003338.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

fMRI subjects
Twenty subjects (6 female, 18-35 years old) with normal or corrected-to-normal vision and fluent in English were recruited via campus

flyers and word-of-mouth. Subjects were given hourly monetary compensation for participating ($20/hr). Written informed consent

was obtained in amanner approved by the Princeton University Institutional ReviewBoard. All subjects self-professed to having seen

or played in more than 50 basketball games (across all competitive levels of the sport).

METHOD DETAILS

Stimuli
The last five minutes from all 32 Round-of-64 2012 NCAA� tournament games were acquired as audiovisual files for a fee and with

permission from Wazee Digital. These files were down-sampled to visual dimensions of 1280 3 720 and frame rate of 29.75 Hz and

audio dimensions of 48,000 Hz for computational efficiency when presented using the MATLAB Psychtoolbox software. These

games were additionally edited to reduce their overall length by eliminating breaks in action (other than brief intervals preceding

free throws and in-bound passes) in a manner that did not significantly compromise their overall comprehensibility, resulting in clips

between 5:29 and 7:32 in length. Tournament games from the Round-of-64 were used for the following reasons: tournament teams

are given ‘‘seeds’’ that inform subjects about the teams’ relative strengths (stronger teams have lower numbered seeds, so #1 seeds

are the strongest teams), which should aid subjects’ win probability estimations; tournament games have a heightened sense of

importance relative to the regular season, enhancing subject engagement; the Round-of-64 is an early round of the tournament

that we intuited subjects would be unlikely to remember (if they had seen or read about the original broadcasts). Nine games

were selected for presentation in the scanner using the following criteria: Games were selected to have as wide-ranging amounts

of surprise as possible (Figure S1); games were also selected to have as wide-ranging tournament seeds as possible, except that
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no games between #1 and #16 seeds were selected, as no #1 seed had ever lost before 2012 – each of the other types of matchups

(#2 versus #15, #3 versus #14, #4 versus #13, #5 versus #12, #6 versus #11, #7 versus #10, and #8 versus #9 seeds) was selected at

least once; games involving extremely well-known teams (e.g., North Carolina) were given a lower priority to reduce the likelihood that

a subject may have remembered the outcome. The selected games/seeds were as follows: #2 Missouri versus #15 Norfolk State; #3

Florida State versus #14 Saint Bonaventure; #4 Indiana versus #13 NewMexico State; #5Wichita State versus #12 Virginia Common-

wealth University; #6 University of Nevada-Las Vegas versus #11 Colorado; #7 Gonzaga versus #10 West Virginia; #7 Saint Mary’s

versus #10 Purdue; #7 Notre Dame versus #10 Xavier; #8 Creighton versus #9 Alabama.

Design and procedure
The experiment included four phases: game viewing, free recall, prediction test, and anticipated surprise preference test (Figure 1).

Subjects arrived in the scanner suite, learned aboutMRI safety, gave informed consent to participate, listened to the instructions, and

then entered the magnet.

The main section of the experiment consisted of three alternations between game viewing and free recall phases. Game viewing

phases included three games in succession as part of one scanning run. To keep run length approximately even, the nine videoswere

pseudo-randomly shuffled so that one of the longest three, one of the shortest three, and one of the remaining three were shown in

each run. Gameswere presented in themiddle 80%of the screen so the subject’s viewwould not be obstructed. Audiowas delivered

via scanner earbuds and volume levels were tested before the games using an internet video. Audio from the regular broadcast,

including crowd noise and commentary, was included to maintain a naturalistic viewing experience. Subjects were asked to simply

watch the games, though they were told beforehand that they would later be asked to freely recall the games using as much specific

detail as possible. After each game, they were asked to indicate the team for which they were cheering or if they had no preference.

We emphasized that they should not feel obligated to prefer one team or another. After this question, they indicated how enjoyable

they found the game from 1 (not at all enjoyable) to 7 (highly enjoyable).

During recall phases, subjects freely recalled the three previously seen games (one at a time, in the order in which the games were

viewed) as part of one scanning run. Subjects were shown the names of the two teams involved in the game and were asked to recall

the game in asmuch detail as possible. For instance, theywere asked to include the score and approximate amount of time left during

any possession they could remember and any parts of that possession as they unfolded (e.g., a screen, a pass, a drive, a defender’s

move, the outcome of a shot).

After three rounds of viewing and free recall, subjects remained in the scanner to receive anatomical and fieldmap scanswhile they

performed two more behavioral tasks. In the first, subjects were asked to rate the likelihood of teams winning for a series of posses-

sions from five games (Figure 1E). These games were also taken from the 2012 tournament and were chosen to evenly distribute win

likelihoods and resemble the likelihood distributions of the viewed games as much as possible (Figure S1). Subjects were shown the

teams, their seeds (i.e., their relative strengths), their scores, which team had the ball, and the amount of time remaining, and they

were asked to slide a joystick from 0%–100% to indicate the likelihood that the stronger-seeded team would win. These scenarios

were updated after every possession, so each game hadmultiple ratings. The selected games/seedswere as follows: #2Duke versus

#15 Lehigh; #4 Michigan versus #13 Ohio; #5 New Mexico versus #12 Long Beach State; #6 Cincinnati versus #11 Texas; #8 Mem-

phis versus #9 Saint Louis. We correlated these likelihoods against the algorithm to assess prediction abilities. Data were omitted

from the few instances in which subjects knew the outcome.

In the second task, subjects rated (from 1-7) how excited they would be to watch 28 games starting with five minutes remaining

from the Round-of-64 in the 2013 tournament (Figure S3B). All gameswere selected, except for games between #1 and #16 seeds for

the reasons delineated above. We found the anticipated level of surprise by finding games from the 2012 regular season corpus with

similar win probabilities with fiveminutes remaining and calculating the actual amount of surprise remaining in those games. Then, we

correlated these excitement ratings with anticipated surprise for each subject (Figure S3B).

After these tasks, subjects left the scanner and completed a questionnaire. Questions included approximately how much basket-

ball they had watched (i.e., their expertise), their most and least favorite teams (none were involved in the games they viewed except

for one subject’s third favorite team), whether they knew or suspected the outcomes of any games that they viewed or that were part

of the prediction tests (two subjects knew the outcomes for one viewed game each; two subjects knew the outcome of one game in

the belief test), their level of overall engagement (6.55 ± 0.25 out of 10), and whether they found any parts of the games particularly

surprising (two subjects mentioned an unusual lane violation during a critical free throw).

Win probability metric
To calculate win probabilities for each possession, we created a model based on four factors: the difference in score between the

teams oriented to be positive when the ‘‘home’’ team is winning and negative when they are losing, the amount of time remaining,

which team is in possession of the ball, and, where publicly available, an adjustment based on team strength. This model was trained

using data from every regular season game from the 2012 season. Using the first half of the corpus data, we found every instance of a

particular ‘‘game state,’’ binned by every score difference from �20 to +20 for home - visitor score, every time bin within 6 s (e.g.,

60-54 s left in the game), and either team possession (home or visiting team). From these instances, we ‘‘peek ahead’’ and compute

the percentage of instances in which the home team won that game to create a home win probability for that bin. Following the ten-

dency of a basketball analyst’s algorithm (see below) to avoidmaking predictions of absolute certainty, we added up to 0.5%of noise
e2 Neuron 109, 377–390.e1–e7, January 20, 2021
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for any state with exactly 0% or 100% probability (probability values of 0% were replaced with a value uniformly sampled between

0.0% to 0.5%, and probability values of 100% were replaced with a value uniformly sampled between 99.5% to 100.0%) Then we

applied light smoothing across bins, with no smoothing for the final two time bins to avoid having too much blurring in scenarios with

extremely well-defined probabilities. In Figure 1B, we plotted time bins on the x-axis and score differences on the y-axis with win

probability in color from 0-100. We created separate plots for when the home team possesses the ball (top), when the visiting

team possesses the ball (middle), and – because it can be difficult to spot the differences in the top two plots – we created a third

plot showing the difference between them, i.e., the difference between the home team having possession and the visiting team hav-

ing possession, controlling for the same time / score difference bins (bottom).

In observing themodel, first and foremost, score difference strongly predicts win probability. Second, this advantage relies on time,

as the score difference has a larger effect on win probability as time elapses. As an example, having a 5-point lead with 300 s left

(�70%win probability) is less advantageous than the same lead with 5 s left (�99% win probability). Third, the advantage for having

possession of the ball is relatively small for much of the game, but becomes quite large in a close game with very little time left.

We validated the model’s win probabilities by training on the first half of corpus games and testing on the second half in two ways:

1) against win probability estimates from an expert sports analyst and 2) against the actual outcomes from an out-of-sample subset of

games. We obtained win probability estimates created for a basketball analytics website using a custom, proprietary algorithm by

Ken Pomeroy (K.P.; https://www.kenpom.com/). These estimates were created using similar factors, such as the score difference

between the teams, the amount of time left, the team in possession of the ball, and the strength of the two teams. We obtained these

data from the entire 2012 season via personal correspondence, although the data are also available on K.P.’s website. Our estimates

on the second half of games show a strong correspondence with those of K.P. (r = 0.998) (Figure 1C, top). We also compared the

predictions of our model to the true likelihood on the second half of the data. The 4-factor model also showed a strong correspon-

dence with these likelihoods (r = 0.9992).

For the final version of themodel to use for the viewed games, we trained themodel again using all of the regular season games. Then

we added the final factor to themodel: an adjustment based on the relative strength of the teams obtained fromK.P.’s publicly available

website as the score difference in the predicted outcome. For example, Missouri was expected to beat Norfolk St. by 23 points (86-63).

From this, we can compute howmuchwe expectMissouri to outscore Norfolk St. on a per second basis [23 points / (40minutes in a full

game * 60 s / min) = + 0.0096 points per second].We then created an ‘‘expected score difference’’ value for each possession by adding

[e.g., 0.0096 * the number of seconds remaining in the game] to the actual score difference and used this metric in the model to find the

win probability. We validated this final model against K.P.’s predictions on the viewed games (Figure 1C, bottom) (r = 0.996).

Surprise calculation and related metrics
As an agent traverses theworld, they proceed through a series of states. In viewing basketball, one could conceptualize amomentary

state as the current score, the team in possession of the ball, the relative strength of the two teams, and the amount of time left in the

game. In each state, an ideal observer, via repeated experience (e.g., watching games), could form a refined, probabilistic belief in

some outcome (e.g., which team will win) via an iterative process like temporal difference learning (Sutton and Barto, 1998).

As formulated elsewhere (Ely et al., 2015), surprise is the change in prediction from the previous to the current state (here, the

change in win likelihood). For the purposes of aligning surprise as a psychological phenomenon with physiological and neuroimaging

data, surprise was labeled as ‘0’ for all stable time points (e.g., within a possession) and the magnitude of the surprise scaled with

changes in belief state (resembling a ‘‘stick’’ function with spikes of varying magnitudes; Figure 1D).

Some analyses separated ‘‘belief-consistent’’ from ‘‘belief-inconsistent’’ surprise. To do this, we first found the team with a higher

than 50% chance of winning. Events that increased this probability were classified as belief-consistent, and events that decreased it

were classified as belief-inconsistent. There were no differences between the mean size of surprise for these constructs (belief-

consistent: 6.44 ± 0.12; belief-inconsistent: 6.54 ± 0.08, p = 0.93).

Free recall scoring
Subject recall recordings were sampled at 11,025 Hz using built-in MATLAB software and converted for transcription. Each TR in

which subjects spoke was classified as belonging to one of the following recall types: (1) veridical recall, with sufficient specific detail

to be identified as a particular possession, (2) gist-based, summarized recall that is temporarily imprecise but accurate, (3) inaccurate

detail that is nonetheless about the game, (4) irrelevant commentary about the game, and (5) words that are not related to recall. Addi-

tionally, for each TR in which subjects spoke, we recorded: which (if any) gamewas being recalled; if (1) for recall type, which posses-

sion is being recalled, or if (2), which are the first and last of the numerous possessions that are being summarized; if (1) for recall type,

does the recall relate to the first or the second half of the possession? After creating these labels, we considered for a given subject

only whether each possession was recalledwith specific detail (1) and the order of these recalls with respect to the order in which they

occurred in the game.

Memory metrics
We calculated the temporal contiguity effect (Figure 6B) by finding, for each position after the initial one, the lag (in number of pos-

sessions as they actually occurred) with respect to the prior recalled possession. We then normed lags within-subject so that every

subject’s proportions summed to one. See Figure S5 for one subject’s possession recall transitions.
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For the mixed effects logistic regression analysis predicting memory across possessions, we ran a model including all of the

following factors: surprise, pupil area change, and peak ventral tegmental area (VTA) activation for transitions leading into the posses-

sion and at the end of the possession, previous possession memory, oddness of possession, and subject expertise. All analyses for

factors leading into possessions had no data (NaN values) for the first possession of the video clip. Peak VTA activation was calcu-

lated as the value at each possession at its peak of �2 s minus a baseline averaged from �12 to �8 s (Figure S6). ‘‘Oddness’’ of

possessions was determined independently by an expert for unusual basketball plays (e.g., a lane violation during a critical free

throw). Only 2 out of 157 possessions were labeled this way. Subject expertise was coded as 1-3 depending on the number of games

played in/watched over the lifetime (8 subjects had watched 50-200 games; 9 subjects, 200-1000 games; 3 subjects, over 1000

games). Significant factors were depicted in Figure 6C and a full report of the analysis can be found in Table S5.

Event segmentation behavioral experiment
Fifteen subjects (8 female, 18-35 years old) with similar characteristics were recruited as above and were given hourly monetary

compensation for participating ($10/hr for behavioral studies). Written informed consent was similarly obtained. Subjects watched

the same games as those viewed in the scanner, though in this case they watched all 9 games consecutively. They performed

the following task as they watched: ‘‘Click the mouse when, in your judgment, one unit of the game ends. Mark off the game you’ll

be seeing into the largest units that seem natural and meaningful to you.’’ (Newtson, 1973) These subjects performed the prediction

test, but did not perform recall nor the future surprise preference test.We labeledmouse clicks occurring within 2 s after a possession

change as an endorsement of it as an event boundary and aligned these responses with other possession-level metrics (Figure 2A).

Specifically, for each boundary, we computed a subjective boundary agreement score, quantifying the agreement across subjects

(ranging from 0 for no agreement to 1 for perfect agreement) that a game unit ended at that possession boundary.

Physiological measurements and analysis
Eye tracking data were acquired in the scanner at 1000 Hz using EyeLink 1000 software (SR Research, Inc., Mississauga, Ontario

Canada). Eye tracking data from 6 subjects were lost due to technical difficulties. Extreme outliers (z > 5) and time periods when

the gaze location was off-screen were removed, and after exclusion missing pupil area and eye location data were interpolated

by averaging around the errant time periods.

Pupil area measurements are influenced by both gaze location and video luminance. Normally, experimenters measuring gaze

location only present stimuli centrally or in fixed locations (e.g., Eldar et al., 2013); however, we reasoned that restricting subjects’

gaze while watching videos would artificially affect their viewing experience. Instead, we accounted for gaze location confounds

by binning x- and y-coordinates and z-scoring pupil area within each bin (Figure 2A). We addressed confounds related to video lumi-

nance by calculating the mean global gray-scaled luminance for the entire screen and local gray-scaled luminance corresponding to

the approximate visual angle of the fovea (2�) (Choplin and Edwards, 1998) surrounding the current eye location for each second of

video. We addressed confounds related to video motion by calculating the frame-by-frame change in luminance for every pixel,

creating a difference image (Puttegowda and Padma, 2016). For global motion, we averaged these pixel-based changes across

the full screen, and for local motion, we averaged these changes within 2� of the current eye location. We addressed the confound

of auditory volume by averaging the auditory envelope of the broadcast for each second of video and the confound of commentator

prosody by finding the fundamental frequency (f0) in the audio stream using Praat software (http://www.fon.hum.uva.nl/praat/)

(Boersma, 2001). Brief stretches without speech were given NaN values and were omitted from the regression. We addressed

possible confounds relating to the position of the ball on the court by creating an experimenter-annotated regressor indicating

whether the ball was on the left or right side of the game telecast. We also added a regressor indicating the amount of game time

remaining at the start of each possession. Regressors were averaged and down-sampled to one value per second.

For time-course analyses locked to possession boundaries, normed pupil area was averaged within each second and then across

trials. A t-test was then performed across subjects between the pre (�6 to�2 s) and post interval (0 to 2 s). To relate pupil area mea-

surements across possession boundaries to surprise, we entered the amount of game remaining, global luminance, local luminance,

global video motion, local video motion, the auditory envelope, commentator prosody (f0), court position, and surprise into a mixed-

effects, linear regression model predicting pupil area change using subject as a random effect. Global luminance, local luminance,

global video motion, local video motion, the auditory envelope, and commentator prosody (f0) were entered as their change values

from average post-boundary minus average pre-boundary values, whereas court position and game remaining were entered as their

value at the beginning of the new possession (since the subtraction would be theoretically meaningless). We also re-ran separate

linear, mixed-effect models looking at how surprise across the possession boundary predicted pupil area (rather than pupil area

change) at every time point in the interval. For this analysis, we applied FDR correction assuming dependence across tests because

of the temporally autocorrelated pupil signal (Benjamini and Yekutieli, 2001).

FMRI acquisition and preprocessing
Neuroimaging data were acquired on a 3T full-body Siemens Prisma scanner with a 64-channel head coil, using a T2*-weighted echo

planar imaging (EPI) pulse sequence (simultaneousmultislice factor 4, no in-plane acceleration, TR 1000ms, flip angle 59�, TE 30ms,

whole-brain coverage 56 slices of 2.5 mm thickness, in-plane isotropic resolution of 2.5 mm, FOV 195 mm). The first preprocessing

steps were performed using FMRIprep (https://github.com/nipreps/fmriprep; Esteban et al., 2019), including motion correction, sus-
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ceptibility distortion correction (using field maps or the ‘‘use-syn-sdc’’ flag in their absence), brain tissue segmentation, and coregis-

tration and affine transformation of the functional volumes to the 1 mm isotropic T1w anatomical and subsequently to MNI space.

The data were imported, down-sampled to a 3 mm isotropic resolution, and three scans from the beginning of each run were dis-

carded. Next, the data were smoothed using SUSAN smoothing (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SUSAN, Python code adapted

from: https://github.com/INCF/BrainImagingPipelines/blob/master/bips/workflows/gablab/wips/scripts/modular_nodes.py) with a

5-mm full width-half maximum spatial kernel. Next, the data were masked using an across-run averaged mask, z-scored, high-

pass filtered (140 s cutoff) (Aly et al., 2018; Chen et al., 2017), and confound variables [movement in three directions, rotation in three

directions, framewise displacement, and six anatomical components used to correct for the influence of physiological noise

(‘‘a_comp_cor_00’’ to ‘‘_05’’ in fMRIprep) (Behzadi et al., 2007)] were regressed out at the run level. Data from the first 10 s of

each video were removed to avoid confounds related to strong onset responses (Nastase et al., 2019).

Regions of interest (ROIs)
Binarized V1, precuneus, and mPFC ROIs were obtained from a previous dataset (Simony et al., 2016). V1 indicates early visual cor-

tex and nearby voxels; the ROI was created using voxels near the calcarine sulcus with strongest inter-subject correlation. Precuneus

and mPFC were calculated using whole-brain functional connectivity using posterior cingulate cortex as the seed, separating the

default mode network into 10 parts with significant correlations and labeling the masks based on cluster location. The NAcc ROI

was obtained using an association test in Neurosynth (threshold: z > 10) based on the term, ‘‘nucleus accumbens.’’ A probabilistic

ventral tegmental area (VTA) ROI was obtained fromMurty et al. (2014) via personal correspondence, and a 75%probability threshold

was used to binarize it, resulting in 37 voxels. Additionally, HMM analyses were performed using parcels from the Harvard-Oxford

Brain Atlas package from FSL 5.0 (Smith et al., 2004).

Hidden Markov model (HMM) analyses
The start of each video was locked to a pulse from the scanner to align the hemodynamic response for each moment in the video

across subjects. In an additional preprocessing step, the imaging data were shifted 5 s (5 TRs) for later alignment withmarked events.

All HMM analyses were performed using the Brainiak toolbox function, brainiak.eventseg.event.EventSegment (Kumar et al.,

2020). Each HMM state was composed of a particular mean activity pattern across all voxels within the region, and each instance

of a neural pattern was assumed to be normally distributed around this mean. Following prior work (Baldassano et al., 2017), this

particular analysis function imposes the constraint that the HMM cannot re-visit a state once it leaves that state. In other words,

each new neural pattern is either assigned to the same state as the previous time step, or a new (not-previously-visited) state.

HMMs were trained on a version of this Brainiak function that provides better fits when event states are uneven in length (‘‘split_mer-

ge=True’’ in Brainiak v0.10). To train the HMMswithin each ROI/parcel, we first found the best-fitting number of states for each game

using a nested cross-validation procedure. On each of the ‘‘outer loop’’ folds for this cross-validation procedure, we selected a single

test subject; the other 19 subjects were split into 14 training subjects and 5 validation subjects. Data from the 14 training subjects

were averaged together, and data from the 5 validation subjects were averaged together. For the ‘‘inner loop’’ of the cross-validation

procedure, we tried versions of the model with different numbers of HMM states ranging from 1 to 30. In each of these ‘‘inner loop’’

folds, we trained the model on the (averaged) data from the 14 training subjects, applied that model to the (average) data from the 5

training subjects, and computed the log-likelihood of the fit to the validation set (for robustness, we used four different ways of

dividing the 19 non-test subjects into a training set and a validation set). Based on the ‘‘inner loop’’ results, we chose the number

of states that maximized the log-likelihood of the fit to the validation set. We then fit a new HMM to the withheld ‘‘test’’ subject using

this number of states. Full details of the basic model are described elsewhere (Baldassano et al., 2017).

We were first interested in where the HMM placed state transitions and how this aligned with possession boundaries and

surprise at those boundaries. To address the question of whether the HMM state transitions aligned with possession bound-

aries, we first averaged the HMM state transition time course ( = 1 when there is a transition, 0 otherwise) across subjects;

we then smoothed both the averaged HMM state transition time course and the possession boundary time course (binary

1/0) by taking running averages using a moving window of ± 7 s; finally, we concatenated the smoothed time courses across

all nine games and correlated the smoothed time courses for HMM state transitions and possession boundaries. To assess the

strength of these correlations versus chance, we created null distributions in two ways. First, we circularly shifted the posses-

sion boundary time course within each game. This means that we shifted the possession boundary time course ahead by a

random number of TRs, cut off the part that extended beyond the neural time course, and moved that part to the beginning

of the possession boundary time course. This shift was performed 10,000 times to random extents within each game, with

the provision that the circular shift could not land within 1 TR of the same time course. Second, we scrambled the order of pos-

sessions (preserving possession length) within a game 10,000 times. In both cases, we then compared the true versus scram-

bled distributions (Figure 3B shows the latter method).

Next, we were interested in whether HMM boundaries increase with surprise, which we computed both across games and pos-

sessions. Across games, we correlated the best-fitting number of states per minute for each game with mean surprise in that game,

and we compared this with null distributions by shuffling the mean surprise for each game 10,000 times (Figure 3C). Control corre-

lations were also run to verify these correlations could not be explained by the number of possessions per minute or total amount of

visual motion per minute (which captures, e.g., camera angle shifts), and linear regression analyses including all of these factors were
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run to investigate whether the surprise effect survived when these factors were considered. Significance was assessed in a similar

manner by comparing the true betas to those in permutation tests.

Across possessions, we asked whether HMM state transitions occurred more often at surprising possession boundaries. To

answer this question, we first calculated (for each region of interest, and for each possession boundary) HMM state transition agree-

ment, operationalized as the proportion of subjects showing at least one HMM state transition in the 15-s window spanning the

possession boundary (±7 s around the boundary) (Figure 3D). There were 157 possessions in total across the 9 games, so we

had 157 of these HMM state transition agreement values. Next, we correlated HMM state transition agreement with the amount

of surprise at each boundary across the 157 possessions. Finally, we compared this correlation with null distributions whereby

we circularly shifted the surprise assigned to each possession within game, with the provision that the new circularly shifted order

could not land within 1 of the original possession order. In other analyses, we repeated this procedure for belief-consistent and

belief-inconsistent surprise, all against similar null distributions. We also correlated HMM state transition agreement with subjective

boundary agreement from the other group of subjects. For HMManalyses applied to parcels from the Harvard-Oxford Brain Atlas, we

calculated FDR values for each parcel, assuming independence (Benjamini and Hochberg, 1995).

Neural general linear model (GLM) analyses
We created parametric regressors by aligning discrete events with each video. These events were convolved using the canonical

HRF to create a time course for the regression. For signed analyses, positive values indicated positive events for the preferred

team, and vice versa.When no teamwas preferred in these analyses, the entire gamewasmodeled as a row of zeros. Data scrubbing

(Power et al., 2012) was performed by finding TRswith a framewise displacement above 0.33 and removing the segment starting 1 TR

before and 2 TRs after (Clasen et al., 2014). Because our surprise regressors remained at zero in between surprise events, a brain

area responding similarly to every win probability change (rather than in a graded, linear fashion) could also result in a positive

beta. Therefore, we also created binarized ‘‘onset’’ regressors, whereby all events were given the same binary positive value for un-

signed surprise and the same positive or negative value for signed surprise. Under this regime, positive betas for the regular versions

will only occur when there is a linear relationship with the amount of surprise rather than just any surprise. The following regressors

entered eachGLM: the amount of game remaining in seconds of game time at the start of the possession; which teamwas in posses-

sion of the ball; the auditory envelope; global video luminance; global video motion; commentator prosody; court position of the ball

(left or right); framewise displacement of the head; (unsigned) surprise; signed surprise; unsigned, binarized surprise; and signed,

binarized surprise (Table S4). We also ran a follow-up GLM removing unsigned surprise and including belief-consistent and

belief-inconsistent surprise (Table S4). Neural GLMs were performed using the linear_model.LinearRegression function in Python’s

scikitlearn toolbox. Note that framewise displacement showed a significant relationship with VTA activity (t = 3.83, p = 0.001) (Table

S4), raising the potential concern that it separately correlated with surprise. We therefore correlated each subject’s framewise

displacement on each TR with the time course of surprise. These correlations did not differ from zero, contrasting the Fisher r-to-

z transformed correlation coefficient against a row of zeros (t = 1.35, p = 0.19).

QUANTIFICATION AND STATISTICAL ANALYSIS

For analyses assessing single-subject correlation coefficients (e.g., the prediction test, the future surprise test), we computed Fisher

r-to-z transformed values before comparing to zeros by paired t-test.

For all permutation analyses, we used 10,000 permutations and assessed significance bywhether true values fell below the 2.5th or

above the 97.5th percentile of the null distribution. For event segmentation and memory analyses, we correlated various surprise

measures against across-subject boundary agreement and across-subject possession memory, respectively, and we assessed

chance by circularly shifting the possession order within each game while keeping the order of the games intact. Note that this is

a highly conservative method for assessing chance, and that null distributions using this metric are occasionally above zero due

to across-game differences, because circularly shifted values for a game high in surprise will shift onto other high surprise values

more often than chance.

In the HMMboundary time course analyses, we correlated smoothed HMMstate transition agreement against a smoothed bound-

ary time course concatenated across all games. We assessed significance by comparing to two types of null distributions: 1) data

that were circularly shifted within game and then concatenated across games, and 2) data in which the order of possessions was

shuffled within game (preserving possession length) and then concatenated across games. For HMM across-game analyses, we

correlated surprise per minute in each game with the number of best fitting HMM-defined states for each game (averaged across

subjects), and we assessed significance by scrambling the order of the games. In performing HMM possession-by-possession an-

alyses, we correlated various surprise (and subjective boundary agreement) measures against across-subject HMM state transition

agreement, and we assessed chance by circularly shifting the possession order within each game while keeping the order of the

games intact. More details on HMM analyses are described above in the Hidden Markov model (HMM) analyses section.

For mixed-effects linear and logistic regression models (for pupil area and memory analyses, respectively), we used subject as a

random effect and other variables as fixed effects (see Tables S2 and S5 for details). For the pupil area versus surprise time course

analysis, we performed mixed-effects linear regression with subject as a random effect and surprise as the fixed effect. Linear and

logistic models were created using ‘‘lmer’’ and ‘‘glmer’’ functions in R, respectively. We also performed bootstrap versions of each of
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these analyses to address the possibility that they could be driven by outliers (Efron and Tibshirani, 1986). For each of 1,000 boot-

straps, we re-ran the model after resampling participants with replacement; we computed the proportion of bootstraps showing the

effect, and converted this proportion into a two-tailed p value.

For the neural GLM,we ran subject-specificGLMs and assessed the significance of each factor by taking the beta coefficients from

each subject and running a one-sample t-test of the betas against zero. For the pupil area,memory, and neural GLMs, we first consid-

ered a model containing surprise (along with other regressors); after surprise was found to be significant, we ran follow-up models

including belief-consistent and belief-inconsistent surprise as separate factors (Tables S2, S4, and S5). We avoided including sur-

prise in the same model as belief-consistent and belief-inconsistent surprise to avoid issues related to multicollinearity.
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