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Abstract Recent human behavioral and neuroimaging results suggest that people are selective in 
when they encode and retrieve episodic memories. To explain these findings, we trained a memory-
augmented neural network to use its episodic memory to support prediction of upcoming states 
in an environment where past situations sometimes reoccur. We found that the network learned to 
retrieve selectively as a function of several factors, including its uncertainty about the upcoming 
state. Additionally, we found that selectively encoding episodic memories at the end of an event 
(but not mid-event) led to better subsequent prediction performance. In all of these cases, the bene-
fits of selective retrieval and encoding can be explained in terms of reducing the risk of retrieving 
irrelevant memories. Overall, these modeling results provide a resource-rational account of why 
episodic retrieval and encoding should be selective and lead to several testable predictions.

Editor's evaluation
This paper addresses an important problem in control of episodic memory. This paper develops 
a computationally-based proposal about how semantic, working memory, and episodic memory 
systems might learn to interact so that stored episodic memories can optimally contribute to recon-
struction of semantic memory for event sequences. This is an understudied area and this present 
work can make a major theoretical contribution to this domain with new predictions. The reviewers 
were positive about the contribution in review, and the revisions have clarified the model in a 
number of important ways, including through some additional simulation and analysis.

Introduction
In a natural setting, when should an intelligent agent encode and retrieve episodic memories? For 
example, suppose I am viewing the BBC television series Sherlock. Should I retrieve an episodic 
memory that I formed when I watched earlier parts of the show, and if so, when should I retrieve this 
memory? When should I encode information about the ongoing episode?

Although episodic memory is one of the most studied topics in cognitive psychology and cognitive 
neuroscience, the answers to these questions are still unclear, in large part because episodic memory 
research has traditionally focused on experiments using simple, well-controlled stimuli, where partic-
ipants receive clear instructions about when to encode and retrieve. For example, a typical episodic 
memory experiment could ask participants to remember a set of random word-pairs; later on, given 
a word-cue, the participants need to report the associated word (Kahana, 2012). In this kind of word-
pair experiment, the optimal timing for encoding and retrieval is clear: The participant should encode 
an episodic memory when they study a word-pair and retrieve the associate when they are prompted 
by a cue. Existing computational models of human memory have similarly focused on discretized list-
learning paradigms like the (hypothetical) word-pair learning study described above – these models 
(e.g., see Gillund and Shiffrin, 1984; Hasselmo and Wyble, 1997; Shiffrin and Steyvers, 1997; 
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Sederberg et al., 2008; Howard and Kahana, 2002; Norman and O’Reilly, 2003; Polyn et al., 2009; 
Cox and Criss, 2020; for reviews, see Norman et al., 2008; Criss and Howard, 2015) are primarily 
designed to answer questions about what happens as a result of a particular sequence of encoding 
and retrieval trials, not questions about when encoding and retrieval should occur in the first place.

Recently, there has been increasing interest in using naturalistic stimuli such as movies or audio 
narratives in psychological experiments, to complement results from traditional experiments using 
simple and well-controlled stimuli (Sonkusare et al., 2019; Nastase et al., 2020). These experiments 
have the potential to shed light on when encoding and retrieval take place during event perception 
in a naturalistic context, where no one is explicitly instructing participants about how to use episodic 
memory. These studies have found evidence that episodic encoding and retrieval occur selectively 
over time. For example, results from fMRI studies suggest that episodic encoding occurs preferentially 
at the ends of events (Baldassano et al., 2017; Ben-Yakov et al., 2013; Ben-Yakov and Henson, 
2018; Reagh et al., 2020), and episodic retrieval happens preferentially when people are uncertain 
about the ongoing situation (Chen et al., 2016). Selectivity effects can also be observed in the realm 
of more traditional list-learning studies – for example, there is extensive behavioral and neuroscientific 
evidence that stimuli that trigger strong prediction errors are preferentially encoded into episodic 
memory (for reviews, see Frank and Kafkas, 2021a; Quent et al., 2021b).

The goal of the present work is to develop a computational model that can account for when 
episodic encoding and retrieval take place in naturalistic situations; the model is meant to capture key 
features of neocortical-hippocampal interactions, as described below. We formalize the task of event 
processing by assuming that events involve sequences of states drawn from some underlying event 
schema, and that the agent’s goal is to predict upcoming states. We then seek to identify policies for 
episodic encoding and retrieval by optimizing a neural network model on the event processing task. 
We analyze how the optimal policy changes under different environmental regimes, and how well this 
policy captures human behavioral and neuroimaging data. To the extent that they match, the model 
can be viewed as providing a resource-rational account of those findings (i.e., an explanation of how 
these encoding and retrieval policies arise as a joint adaptation to the constraints imposed by the 
human cognitive architecture and the constraints imposed by the task environment; Griffiths et al., 
2015; Lieder and Griffiths, 2019; see also Anderson and Schooler, 2000; Gershman, 2021).

eLife digest The human brain can record snapshots of details from specific events – such as 
where and when the event took place – and retrieve this information later. Recalling these ‘episodic 
memories’ can help us gain a better understanding of our current surroundings and predict what will 
happen next.

Studies of episodic memory have typically involved observing volunteers while they perform 
simple, well-defined tasks, such as learning and recalling lists of random pairs of words. However, it 
is less clear how episodic memory works ‘in the wild’ when no one is quizzing us, and we are going 
about everyday activities.

Recently, researchers have started to study memory in more naturalistic situations, for example, 
while volunteers watch a movie. Here, Lu et al. have built a computational model that can predict 
when our brains store and retrieve episodic memories during these experiments.

The team gave the model a sequence of inputs corresponding to different stages of an event, and 
asked it to predict what was coming next. Intuitively, one might think that the best use of episodic 
memory would be to store and retrieve snapshots as frequently as possible. However, Lu et al. found 
that the model performed best when it was more selective – that is, preferentially storing episodic 
memories at the end of events and waiting to recover them until there was a gap in the model’s 
understanding of the current situation. This strategy may help the brain to avoid retrieving irrelevant 
memories that might (in turn) result in the brain making incorrect predictions with negative outcomes.

This model makes it possible for researchers to predict when the brain may store and retrieve 
episodic memories in a particular experiment. Lu et al. have openly shared the code for the model so 
that other researchers will be able to use it in their studies to understand how the brain uses episodic 
memory in everyday situations.

https://doi.org/10.7554/eLife.74445
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Overall, we find that the best-performing policies are selective in when encoding and retrieval take 
place, and that the types of selectivity identified by the model line up well with types of selectivity 
identified empirically. The key intuition behind these effects is that – while retrieving episodic memo-
ries can help us to predict upcoming states – there are risks to episodic retrieval: If you retrieve an irrel-
evant memory, you could make confident, wrong predictions that have negative consequences. The 
selective encoding and retrieval policies identified by the model help it to mitigate these risks while 
retaining the benefits of episodic memory. In the sections that follow, we describe our neocortical-
hippocampal model, how we applied it to the tasks of interest, and the results of our simulations.

Results
A neural network model of neocortical-hippocampal interaction
Our modeling work leverages recent advances in memory-augmented neural networks (Graves et al., 
2016; Ritter et al., 2018), deep reinforcement learning (Mnih et al., 2016; Sutton and Barto, 2018), 
and meta-learning (Wang et al., 2018; Botvinick et al., 2019) – these advances (collectively) make it 
possible for neural network models to learn to use episodic memory in the service of prediction (for 
an earlier precedent, see Zilli and Hasselmo, 2008).

Our model (Figure 1A) has two parts, which are meant to correspond to neocortex and hippo-
campus, and which collectively implement three key memory systems (working memory, semantic 
memory, and episodic memory). The neocortical part of the model incorporates a Long-Short-Term 
Memory module (LSTM; Hochreiter and Schmidhuber, 1997), which is a recurrent neural network 
(RNN) with gating mechanisms. In addition to the LSTM module, the neocortical network also incor-
porates a nonlinear decision layer (to assist with mapping inputs to next-state predictions) and an 
episodic memory (EM) gating layer, the function of which is described below. The LSTM module 
gives the neocortical network the ability to actively maintain and integrate information over time. For 
terminological convenience, we will refer to this active maintenance ability in the paper as ‘working 
memory’. However, we should emphasize that – contrary to classic views of working memory (e.g., 
Baddeley, 2000) – our model does not have a working memory buffer that is set apart from other 
parts of the model that do stimulus processing; rather, active maintenance and integration are accom-
plished via recurrent activity in the parts of the model that are doing stimulus processing. In this 
respect, the architecture of our model fits with the process memory framework set forth by Hasson 
et al., 2015. In addition to this active maintenance ability, the connection weights of the neocor-
tical network gradually extract regularities from the environment over time; this gradual learning of 

Figure 1. Neocortical-hippocampal Model. (A) At a given moment, the neocortical part of the model (shown in gray) observes the current state and 
predicts the upcoming state. It incorporates a Long Short Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) network, which integrates 
information over time; the LSTM feeds into a non-linear decision layer. The LSTM and decision layers also project to an episodic memory (EM) gating 
layer that determines when episodic memories are retrieved (see part C of figure). The entire neocortical network is trained by an advantage-actor-critic 
(A2C) objective (Mnih et al., 2016) to optimize next-state prediction. (B) Episodic memory encoding involves copying the current hidden state and 
appending it to the list of memories stored in the episodic memory system (shown in blue), which is meant to correspond to hippocampus. (C) Episodic 
memory retrieval is implemented using a leaky competing accumulator model (LCA; Usher and McClelland, 2001) – each memory receives excitation 
proportional to its similarity to the current hidden state, and different memories compete with each other via lateral inhibition. The EM gate (whose 
value is set by the EM gate layer of the neocortical network) scales the level of excitation coming into the network. After a fixed number of time steps, 
an activation-weighted sum of all memories is added back to the cell state of the LSTM.

https://doi.org/10.7554/eLife.74445
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regularities can be viewed as an implementation of semantic memory (McClelland and Rumelhart, 
1987; McClelland and Rogers, 2003; Rogers and McClelland, 2004; Saxe et al., 2019).

The neocortical network is also connected to an episodic memory module (meant to simulate 
hippocampus) that stores snapshots of neocortical activity patterns (Figure 1B) and reinstates these 
patterns to the neocortical network; see the next section for more information on the model’s 
encoding policy (i.e., when it stores snapshots). Episodic memory retrieval (Figure 1C) is implemented 
via a leaky competing accumulator process (LCA; Usher and McClelland, 2001; Polyn et al., 2009). 
In the LCA, memories compete to be retrieved according to how well they match the current state 
of the neocortical network, and the output of this competitive retrieval process is added back into 
the neocortical network. Crucially, the degree to which memories are activated during the retrieval 
process is multiplicatively gated by the EM gate layer of the neocortical network – this gives the 
neocortical network the ability to shape when episodic retrieval occurs (for more details on how EM 
works in the model, see the Episodic retrieval section in the Materials and methods).

The entire neocortical network (composed of the LSTM, decision, and EM gate layers) is trained 
via a reinforcement learning algorithm to optimize prediction of the next state given the current 
state as input; the trainable nature of the EM gate allows the network to learn a policy for when 
episodic memory retrieval should occur, in order to optimize next-state prediction. Specifically, we 
used a meta-learning procedure (Wang et al., 2018) whereby the model was trained repeatedly on 
all conditions of interest with modifiable neocortical weights (meta-training), before being evaluated 
in these conditions with neocortical weights frozen (meta-testing). This procedure captures the idea 
that neocortical weights only change gradually (McClelland et al., 1995), and thus are unlikely to be 
modified enough by one experience to support recall of unique aspects of that experience; as such, 
memory for these unique details depends critically on that information being held in working memory 
or episodic memory (for more details, see the Model training and testing section in the Materials and 
methods).

During meta-training, the model is rewarded for correct next-state predictions and punished for 
incorrect next-state predictions; we also gave the model the option of saying ‘don’t know’ (instead of 
predicting a specific next state), in which case it receives zero reward. In the real world, there are often 
different costs associated with making commission errors (wrong predictions) and omission errors 
(not making a prediction). Having the ‘don’t know’ option gives the model the freedom to choose 
whether it should make a specific prediction (thereby incurring the risk of making a commission error 
and receiving a penalty) or whether it should express uncertainty to avoid a possible penalty. Intui-
tively, this choice should depend on the environment. For example, if the penalty for misprediction is 
zero, the model should make a prediction even if it has high uncertainty about the upcoming state. 
In contrast, if the penalty for misprediction is high, the model should only make a prediction if it is 
certain about what would happen next. Practically speaking, the consequence of including the ‘don’t 
know’ option is to induce the model to wait longer to retrieve episodic memories (see results below 
and also Appendix 5).

Modeling the contribution of episodic memory to naturalistic event 
understanding
Our initial modeling target was a recent study by Chen et  al., 2016, which explored the role of 
episodic memory in naturalistic event understanding. In this study, participants viewed an episode 
from the Twilight Zone television series. This episode was divided into two parts (part 1 and part 2). 
Participants in the recent memory (RM) condition viewed the two parts back-to-back; participants 
in the distant memory (DM) condition had a 1-day gap in between the two parts of this TV episode; 
participants in the no memory (NM) condition only watched the second part (Chen et al., 2016). In 
the RM condition, participants can build up a situation model – that is, a representation of the relevant 
features of the ongoing situation (Richmond and Zacks, 2017; Stawarczyk et al., 2021; Zacks, 2020; 
Ranganath and Ritchey, 2012) – during the first part of the movie and actively maintain it over time; 
all of that information is still actively represented at the start of part 2. By contrast, in the DM condi-
tion, a day has passed between part 1 and part 2, so participants are no longer actively maintaining 
the relevant situation model at the start of part 2.

Taken together, these conditions can be viewed as manipulating the availability of relevant episodic 
memories and also the demand for episodic retrieval. In the NM condition, at the start of part 2, 

https://doi.org/10.7554/eLife.74445
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participants have gaps in their situation model (because they did not view part 1) and thus there is a 
strong demand to fill those gaps, to better understand what is going on; however, they do not have 
any relevant episodic memories available to fill those gaps. In the DM condition, because of the 1-day 
delay, participants also have gaps in their representation of the situation in working memory that 
need to be filled with information from part 1; however, unlike the NM participants, DM participants 
can meet this demand by retrieving information about part 1 that was stored in episodic memory. In 
the RM condition, like the DM condition, participants have relevant information about part 1 avail-
able in episodic memory (participants’ experience in part 1 of the DM and RM conditions was iden-
tical, so presumably they stored the same episodic memories during part 1), but there is less of a 
demand to retrieve these episodic memories in the RM condition (because these participants were 
not interrupted, and thus these participants should have fewer gaps in their understanding of the 
situation). The comparison of the RM and DM conditions is thus a relatively pure manipulation of 
demand for episodic memory retrieval. If episodic memory retrieval is sensitive to the need to retrieve 
(i.e., whether there are gaps to fill in), then more retrieval should take place in the DM condition, 
but if episodic memory retrieval is automatic, retrieval should occur at similar levels in the RM and 
DM conditions. The results of the Chen et al., 2016 study strongly support the former (‘demand-
sensitive’) view of episodic retrieval. During the first two minutes of part 2, the researchers found 
strong hippocampal-neocortical activity coupling measured using inter-subject functional connectivity 
(ISFC; computed as functional connectivity across participants; Simony et al., 2016) for DM partic-
ipants, while the level of coupling was much weaker for participants in the RM and NM conditions 
(Chen et al., 2016). Notably, neocortical regions that had a strong coupling with the hippocampus 
(in the DM condition) largely overlapped with the default mode network (DMN), which is believed to 
actively maintain a situation model (Stawarczyk et al., 2021). These results fit with the idea that more 
information is being communicated between hippocampus and neocortex in the DM (‘high episodic 
memory demand’) condition than in the RM (‘low episodic memory demand’) condition and the NM 
condition (where there are no relevant episodic memories to retrieve). This ‘demand sensitive’ view 
of episodic memory implies that neocortex can be strategic in how it calls upon the hippocampus to 
support event understanding, and it underlines the importance of the aforementioned goal of charac-
terizing the policy for when retrieval should occur.

Training environment
To simulate the task of event processing, we define an event as a sequence of states, sampled from 
an underlying graph that represents the event schema. Figure 2A shows a ‘coffee shop visit’ event 
schema graph with three time points; each time point has two possible states. Each instance of an 
event (here, each visit to the coffee shop) is associated with a situation – a collection of features set to 
particular values; importantly, the features of the current situation deterministically control the transi-
tions between states within the event. For example, in Figure 2A, the value of the Weather situation 
feature (sunny or rainy) determines which of the Mood states is visited (happy or angry). That is to say, 
P(Mood = happy | Weather = sunny) = 1 and P(Mood = sad | Weather = rainy) = 1. At each time point, 
the model observes the value of a randomly selected feature of the current situation and responds 
to a query about which state will be visited next. In the example shown in Figure 2A, the agent first 
observes that Day = weekday, and then is asked to predict the upcoming Barista state (will the barista 
be Bob or Eve). Then it observes that Sleepiness = sleepy and is asked to predict the upcoming Mood 
state (will the barista be happy or angry). Finally, it observes that the Weather = sunny and is asked 
to predict the upcoming Drink state (will the drink be juice or latte). Note that the order of queries is 
fixed but the order in which situation features are observed is random.

Both observations and queries are represented by one-hot vectors (for details, see the Stimulus 
representation section in the Materials and methods). In our simulations, the length of the event graph 
is 16 and the number of states for each time point is 4. This means the number of unique ways in which 
an event can unfold (depending on the features of the current situation) is 416 – far too many to memo-
rize. As such, learning an effective representation of the event graph (i.e., which states can occur at 
which time points, and how the state transitions depend on the values of the situation features) is 
essential for predicting which state will come next. In our model, this information is learned during 
the meta-training phase and stored in the neocortical network’s weights (i.e., the model’s semantic 
memory). As a terminological point, in this paper we use the term situation to refer to the ‘ground 

https://doi.org/10.7554/eLife.74445
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truth’ of the feature-value pairings for the current event, and we use situation model to refer to the 
model’s internal representation of the current situation in working memory (i.e., in the LSTM cell state).

Figure 2A also illustrates how the memory demands of the task vary depending on when the situa-
tion feature that controls a given state is observed, relative to the query for that state. If the situation 
feature (Day) that controls a particular state (Barista) is observed on the same time step as the query 
for that state, no memory is needed to answer the query. If the relevant situation feature (Sleepiness) 
for controlling a state (Drink) was recently observed (e.g., at an earlier time step in the sequence), the 
model can answer the query by holding the value of that feature in working memory. If the relevant 
situation feature (Weather) for controlling a state (Mood) was not recently observed, the model can 
not use working memory on its own to answer the query; here, the only way the model can respond 
correctly is by retrieving a stored episodic memory of that situation.

Figure 2B shows the way we simulated the three conditions from Chen et al., 2016. In each of 
the conditions, the agent processes three events. Importantly, for all of the conditions, we imposed 
(by hand) an encoding policy where the model stored an episodic memory (reflecting the current 
contents of working memory – i.e., the LSTM cell state) on the final time point of each event. This 
encoding policy was based on previous findings suggesting that episodic encoding takes place selec-
tively at the end of an event (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano 

Figure 2. A situation-dependent event processing task. (A) An event is a sequence of states, sampled from an event schema and conditioned on a 
situation. An event schema is a graph where each node is a state. A situation is a collection of features (e.g., Day, Weather, Sleepiness) set to particular 
values (e.g., Day = weekday). The features of the current situation deterministically control how the event unfolds (e.g., the value of the Day feature 
controls which Barista state is observed). At each time point, the network observes the value of a randomly selected feature of the current situation, 
and responds to a query about what will happen next. Note that the order of queries is fixed but the order in which situation features are observed is 
random. If a situation feature (Sleepiness) is observed before the state it controls (Drink), the model can answer the query about that state by holding 
the relevant feature in working memory. However, if the relevant situation feature (Weather) is observed after the state it controls (Mood), the model 
can not rely on working memory on its own to answer the query. (B) We created three task conditions to simulate the design used by Chen et al., 
2016: recent memory (RM), distant memory (DM), and no memory (NM); see text for details. (C) Decoded contents of the model’s working memory for 
an example trial from the DM condition. Green boxes indicate time points where the value of a particular situation feature was observed. The color of 
a square indicates whether the correct (i.e., observed) value of that feature can be decoded from the model’s working memory state (white = feature 
accurately decoded; black = feature not decoded). See text for additional explanation.

https://doi.org/10.7554/eLife.74445
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et al., 2017; Ben-Yakov and Henson, 2018; Reagh et al., 2020); we critically examine this assump-
tion in the Benefits of selectively encoding at the end of an event section below. In both the RM and 
DM conditions, the agent first processes a distractor event (i.e., event a1), and then processes two 
related events that are controlled by the same situation (i.e., event b1 and b2). These two related 
events capture the two-part movie in the study by Chen et al., 2016, in the sense that knowing infor-
mation from the first event (b1) will make the second event (b2) more predictable. Note that, at the 
start of movie part 2 (b2), models in both the RM and DM conditions have access to a lure episodic 
memory that was formed during the distractor event (a1), and also a target episodic memory that 
was formed during movie part 1 (b1). The main difference is that, in the DM condition, the working 
memory state is flushed between part 1 and part 2 (by resetting the cell state of the LSTM), whereas 
the flush does not occur in the RM condition; this flush in the DM condition is meant to capture the 
effects of the one-day delay between part 1 and part 2 in the study by Chen et al., 2016. Finally, 
in the NM condition, the agent processes three events from three different situations. Therefore, 
during movie part 2, the agent has no information in working memory or episodic memory pertaining 
to part 1. The model was trained (repeatedly) to predict upcoming states on all three trial types 
before being tested on each of these trial types (see the Model training and testing section in the 
Materials and methods).

To summarize, the task environment used in our simulations captures how understanding of natu-
ralistic events and narratives depends on memory: It is necessary to remember observations from the 
past (possibly from a large number of time points ago) in order to optimally predict the future. For 
example, in the Twilight Zone episode used by Chen et al., 2016, learning that the servants are robots 
early in the episode helps the viewer predict how one character will react when another character 
suggests killing all of the servants; similarly, in the model, learning that the weather is sunny during 
event b1 will help the model predict that the barista will be happy during event b2. The model is 
incentivized to routinely hold observations in working memory, because information that is observed 
early in an event can sometimes be used to answer queries that are posed later in that same event, 
or possibly across events (in the RM condition). This should lead to a dynamic where the amount of 
information held in working memory builds within an event (i.e., with each successive observation, 
the model builds a more ‘complete’ representation in working memory of the features of the current 
situation). Episodic memory is incentivized because of the working memory ‘flush’ in the DM condition 
between events b1 and b2 – information that is relevant to b2 is observed during b1 but flushed from 
working memory, so the only way to benefit from this information is to store it in episodic memory (at 
the end of b1) and then retrieve it from episodic memory at the start of b2 (for additional discussion 
of how episodic memory can help to bridge interruptions, see classic work by Ericsson and Kintsch, 
1995).

Figure  2C illustrates these points by showing the decoded contents of the model’s working 
memory for an example DM trial. To generate this figure, a linear classifier (logistic regression with L2 
penalty) was used to decode whether the correct (i.e., observed) value of each situation feature was 
represented in the working memory state of the model (i.e., the LSTM cell state) at each time point 
during the trial; see the Decoding the working memory state section in the Materials and methods 
for more details. We found that, once a feature was observed (indicated by a green box in the figure), 
this feature typically was decodable until the end of the event, which confirms that observed features 
tend to be actively maintained in the working memory state of the agent. The figure makes it clear 
how, because of this tendency to maintain information over time, the model’s representation of the 
situation becomes more complete over time within part 1 of the event. The model then stores an 
episodic memory snapshot on the final time point in part 1 (indicated by the blue arrow). Between part 
1 and part 2, the model’s working memory state is flushed; then, early in part 2, the model retrieves 
the stored episodic memory snapshot (indicated by the red arrow), which results in many features of 
the situation becoming decodable before they are actually observed during part 2.

We acknowledge that our event-processing simulations incorporate several major simplifications. 
For example, we are modeling the first part of the movie as a single event when, in the Chen et al., 
2016 study, each half of the Twilight Zone episode clearly contains multiple events. We also are 
assuming that the rate of key situation features being revealed is linear (one per time point) and that 
feature values stay stable within events. Our goal here was to come up with the simplest possible 
framework that allowed us to meaningfully engage with questions about encoding and retrieval 

https://doi.org/10.7554/eLife.74445
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policies for episodic memory. In the Discussion, we talk about ways that the model could be extended 
to more fully address the complexity of real-world events.

The learned retrieval policy is sensitive to uncertainty
Figure 3A shows the trained model’s prediction performance during movie part 2, with the penalty 
value for incorrect prediction set to 2. In the recent memory (RM) condition, prediction accuracy is 
at ceiling starting from the beginning of part 2 – all situation feature values for the ongoing situation 
were observed during the first part of the sequence, and the model is able to hold on to these features 
in working memory. In the distant memory (DM) condition, prediction accuracy starts out much lower, 
but after a few time points the accuracy is almost at ceiling. In the no memory condition (NM), predic-
tion accuracy increases linearly, reflecting the fact that the model is able to observe more situation 
features as the event unfolds. The fact that prediction accuracy is better in the DM condition than in 
the NM condition suggests that the model is using episodic memory to support prediction in the DM 
condition.

We were particularly interested in whether the model’s learned retrieval policy would be demand-
sensitive (i.e., would the model be more prone to retrieve from episodic memory if there were gaps 
in its situation model, leading it to be uncertain about the upcoming state). To answer this question, 
we visualized the activation levels of the target and lure memories during part 2, for each of the three 
conditions (Figure 3B). Across the three conditions, we found much higher levels of memory activation 
in the DM condition than the other two conditions. Importantly, the finding (in the model) of greater 
memory activation in the DM condition than the RM condition qualitatively captures the finding from 
Chen et  al., 2016 that the putative fMRI signature of episodic retrieval (hippocampal-neocortical 

Figure 3. The learned episodic retrieval policy is selective. Panels A, B and C show the model’s behavioral performance, memory activation, and 
episodic memory gate (EM gate) value during part 2, across the recent memory (RM), distant memory (DM), and no memory (NM) conditions, when 
the penalty for incorrect prediction is set to two at test. These results show that recall is much stronger in the DM condition (where episodic retrieval 
is needed to fill in gaps and resolve uncertainty) compared to the RM condition. (D) shows that, in the DM condition, the EM gate value is lower if the 
model has recently (i.e., in the current event) observed the feature that controls the upcoming state transition. (E) shows how the average recall time is 
delayed when the penalty for making incorrect predictions is higher. (F) illustrates the definition of the schema strength for a given time point. (G) shows 
how the average EM gate value changes as a function of schema strength (penalty level = 2). The errorbars indicate 1SE across 15 models.
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coupling) was stronger in the DM condition than the RM condition. Note that, in our simulation, the 
set of available episodic memories in the RM and the DM condition is the same. The main differ-
ence is that, in the RM condition, the network has a fully-specified situation model actively main-
tained in its working memory (the recurrent activity of the LSTM) during part 2, which is sufficient for 
the network to predict the upcoming state. In contrast, at the beginning of the DM condition, the 
network’s ongoing situation model is empty – the values for all features are unknown. Overall, this 
result suggests that the learned retrieval policy is demand-sensitive (for simulations of other, related 
findings from this study, see Appendix 6).

To gain further insight into the model’s retrieval policy, we examined the EM gate values in the three 
conditions (Figure 3C). We found that the model sets the EM gate to a higher (more ‘open’) value in 
the DM and NM conditions (where there are gaps in the model’s understanding of the ongoing situ-
ation, causing it to be uncertain about what was coming next), and it suppresses episodic retrieval in 
the RM condition (where there are no gaps). Likewise, within the DM condition, the model sets the EM 
gate to a higher value when the feature controlling the next transition has not been recently observed 
(i.e., the feature is not in working memory, causing the model to be uncertain about what was coming 
next) vs. if the relevant feature has been recently observed and is therefore active in working memory 
(Figure 3D). The same principle also explains why, for later time points in part 2, the EM gate is 
set to a lower value in the DM condition than the NM condition (Figure 3C) – in the DM condition, 
episodic retrieval that occurs on earlier time points makes the model more certain on later time points, 
reducing the demand for episodic retrieval and (consequently) leading to lower EM gate values.

The fact that the model learned a demand-sensitive retrieval policy can be explained in terms of 
a simple cost-benefit analysis: When the model is unsure about what will happen next, the potential 
benefits of episodic retrieval are high. In the absence of episodic retrieval, the model will have to guess 
or say ‘don’t know’, but if it consults episodic memory, the model could end up recalling the feature 
of the situation that controls the upcoming state transition, allowing it to make a correct prediction. 
By contrast, when the feature of the situation that controls the transition is already in working memory 
(and consequently the model is able to make a specific prediction about what will happen next), there 
is less of a benefit associated with episodic retrieval – the only way that episodic retrieval will help is 
if the model is holding the wrong feature in working memory and the episodic memory overwrites it. 
Furthermore, in this scenario, there is also a potential cost to retrieving from episodic memory: Lures 
are always present, and if the model recalls a lure this can overwrite the correct information in working 
memory. Since the potential costs of episodic retrieval outweigh the benefits of episodic retrieval in 
the ‘high certainty’ scenario, the model learns a policy of waiting to retrieve until it is uncertain about 
what will happen next.

Importantly, the model’s ability to adjust its policy when it is uncertain is predicated on there being 
a reliable ‘neural correlate of certainty’ in the model, which can be used as the basis for this differential 
responding; we investigated this and found that the norm of activity in the decision layer is lower when 
the model is uncertain vs. certain (for more details, see Appendix 1). This (implicit) neural correlate of 
certainty exists regardless of whether the model is trained to explicitly signal uncertainty via the ‘don’t 
know’ response. In other simulations (reported in Appendix 5), we found that a version of the model 
without the ‘don’t know’ option can still leverage this implicit neural correlate of certainty to show 
demand-sensitive retrieval (i.e., more episodic retrieval in the DM condition than the RM condition); 
the main effect of including the ‘don’t know’ option is to make the model more patient overall, by 
reducing the cost associated with waiting to retrieve from episodic memory.

The effect of penalty on retrieval policy
A key question is how the model’s policy for prediction and episodic retrieval adapts to different envi-
ronmental regimes. Toward this end, we explored what happens when we vary the penalty on false 
recall from 0 to 4 during model meta-testing – that is, can the model flexibly adjust its policy based on 
the current penalty? (note that the penalty was uniformly sampled from the 0–4 range during meta-
training). If learning a selective retrieval policy is driven by the need to manage the costs of false recall, 
then it stands to reason that varying these costs should affect the model’s policy. Our first finding is 
that adjusting the penalty at test affects the model’s tendency to give ‘don’t know’ responses: When 
the penalty is zero, the model makes specific next-state predictions (i.e., it refrains from using the 
‘don’t know’ response) even when it can not reliably predict the next state, leading to many errors. In 
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contrast, when the penalty is high, the model makes more ‘don’t know’ responses (in the DM condi-
tion, the model responds ‘don’t know’ 15.8% of the time when penalty is set to 4, vs 0.3% of the time 
when penalty is set to 0). This strategy is rational – when the penalty is zero, the expected reward is 
larger for randomly guessing an answer than for saying ‘don’t know’, but when the penalty is set to 
four, the expected reward is larger for saying ‘don’t know’ than for random guessing. We also found 
that, when the model is tested in an environment where the penalty is high, it waits longer to retrieve 
from episodic memory, relative to when the penalty at training is lower (Figure 3E). This delay in recall 
can be explained in terms of a speed-accuracy trade-off. Waiting longer to retrieve from episodic 
memory allows the model to observe more features, which helps to disambiguate the present situ-
ation from other, related situations and thereby reduces false recall. However, waiting longer also 
carries an opportunity cost – the model has to forego all of the rewards it would have received (from 
correct prediction) if it had recalled the correct memory earlier. When the penalty is low, the benefits 
of retrieving early (in terms of increased correct prediction) outweigh the costs (in terms of increased 
incorrect prediction due to false recall), but when the penalty is high, the costs outweigh the benefits, 
so the model is more cautious and it waits to observe more features to be sure that the memory it 
(eventually) recalls is the right one.

The effect of schema regularity on the learned policy
Next, we examined the effect of schema regularity on the agent’s retrieval policy. In the simulations 
preceding this one, we imposed a form of schematic structure by teaching the model about which 
states could be visited at which time points (i.e., the ‘columns’ of Figure 2A). However, within a partic-
ular time point, the marginal probabilities of the states that were ‘allowed’ at that time point were 
equated – put another way, none of the states were more prototypical than any of the other states. In 
this simulation, we also allowed for some states to be more prototypical (i.e., occur more often) than 
other states that could occur at that time point. We say that a time point is schematic if there is one 
state that happens with higher probability, compared to other states. Consider the example illustrated 
in Figure 3F: If the probability of Bob being angry is much greater than the probability of him being 
happy, then we say that this is a highly schematic time point. In contrast, if Bob is equally likely to be 
happy or angry, then the schema strength is low. Intuitively, when there is a strong schema, there is 
less of a need to rely on episodic memory – in the limiting case, if the schematic state occurs in every 
sequence, the model will learn to predict this state every time and there is no need to consult episodic 
memory.

To explore the effects of schema strength, we ran simulations where half of the time points were 
schematic. For the other half of the time points (non-schematic time points), all of the states associ-
ated with that time point were equally probable (given that there were four possible states at each 
time point, the probability of each state was 0.25). Schematic and non-schematic time points were 
arranged in an alternating fashion (for half of the models, even time points were schematic and odd 
time points were non-schematic, and the opposite was true for the other half of the models). For 
schematic time points, we manipulated the strength of schematic regularity in the environment by 
manipulating the probability of the ‘prototypical’ state. We varied schema strength values from 0.25 
(baseline) to 0.95 in steps of 0.10.

The results of this analysis when penalty was set to two at test are shown in Figure 3G, which plots 
the EM gate value during part 2 as a function of schema strength. The first thing to note about these 
results is that, for high levels of schema strength, episodic retrieval is suppressed for schematic time 
points (i.e., time points with a prototypical state) and elevated for non-schematic time points (i.e., 
time points where there was not a prototypical state). The former finding (suppression of retrieval at 
time points where there is a strong prototype) fits with the intuition, noted above, that high-schema-
strength states are almost fully predictable without episodic memory, and thus there is no need to 
retrieve from episodic memory. The latter finding (enhanced retrieval at non-schematic time points, 
when schema strength is high overall) can be explained in terms of the idea that schema-congruent 
features tend to be shared by both target and lure memories and thus are not diagnostic of which 
memory is the target; in this situation, the only way to distinguish between targets and lures is to 
recall non-schematic features, which is why the model tries extra-hard to retrieve them from episodic 
memory.

https://doi.org/10.7554/eLife.74445
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Interestingly, the model shows the opposite pattern of effects when schema strength = .55 or 
.65: Episodic retrieval is enhanced for schematic time points and suppressed for non-schematic time 
points. This reversal can be explained as follows: When schema strength = .55 or .65, the model has 
started to build up a tendency to guess the schema-congruent (prototypical) state, but it is also going 
to be wrong about 1/3 of the time when it guesses the schema-congruent state, incurring a substantial 
penalty. To counteract this tendency to make wrong guesses, the model needs to try extra-hard to 
retrieve the actual feature value for schematic time points (which is why the EM gate value increases 
for these time points) – and if the model is doing more retrieval in response to schematic states, it 
needs to do somewhat less retrieval in response to non-schematic states (which is why the EM gate 
value goes down for these features). As schema strength increases beyond .65, the model will be 
wrong less often when it guesses the schema-congruent state, so there is less of a need to counteract 
wrong guesses with episodic retrieval – this makes it safe for the model to reduce the EM gate value 
for schematic time points at higher levels of schema strength (as described above).

Other factors that affect the learned retrieval policy
In addition to the simulations described above, we also ran simulations exploring the effects of 
between-event similarity and familiarity on the learned retrieval policy. With regard to similarity: We 
found that the model is more cautious about retrieving from episodic memory if trained in environ-
ments where memories are highly similar (because the risk of false recall is higher) – see Appendix 
2 for details. With regard to familiarity: When we provided the model with a familiarity signal that is 
informative about whether a situation was previously encountered, we found that the model learns to 
exploit this information by retrieving more from episodic memory when the familiarity signal is high 
and retrieving less from episodic memory when the familiarity signal is low. This result provides a 
resource-rational account of experimental findings showing that familiar stimuli shift the hippocampus 
into a ‘retrieval mode’ where it is more likely to (subsequently) retrieve episodic memories (Duncan 
et al., 2012; Duncan and Shohamy, 2016; Duncan et al., 2019; Patil and Duncan, 2018; Hasselmo 
and Wyble, 1997; Hasselmo et al., 1995) – see Appendix 3 for details.

Benefits of selective encoding
Above, we showed that the model learned selective retrieval policies (e.g., avoiding retrieval from 
episodic memory early on during part 2, or when certain about upcoming states) in order to reduce 
the risk of recalling irrelevant memories. Here, we shift our focus to the complementary question 
of encoding policy: When is the best time to store episodic memories? In the simulations reported 
below, we show that a selective encoding policy can benefit performance, by reducing interference 
at retrieval later on. Note that our model is presently not capable of learning an encoding policy on 
its own (see Discussion), but we can explore the benefits of selective encoding by imposing different 
encoding policies by hand and seeing how they affect performance.

Benefits of selectively encoding at the end of an event
The simulations presented thus far assumed that episodic memories are selectively encoded at the 
ends of events. This assumption was based on findings from several recent fMRI studies that measured 
hippocampal activity during perception of events and related this to later memory for the events. 
These studies found that the hippocampal response tends to peak at event boundaries (Ben-Yakov 
and Dudai, 2011; Ben-Yakov et al., 2013; Baldassano et al., 2017; Ben-Yakov and Henson, 2018; 
Reagh et al., 2020); this boundary-locked response predicts subsequent memory performance for 
the just-completed event (Ben-Yakov and Dudai, 2011; Baldassano et  al., 2017; Reagh et  al., 
2020), leading researchers to conclude that it is a neural signature of episodic encoding of the just-
completed event.

While these results suggest that the end of an event may be a particularly important time for 
episodic encoding, existing studies do not provide a computational account of why this should be the 
case. This ‘why’ question can be broken into two parts: First, why might it be beneficial to encode at 
the end of an event, and second, why might it be harmful to encode at other times within the event? 
Answering the first question (regarding benefits of encoding at the end of an event) is relatively 
straightforward. Several researchers have argued that information about the current situation builds 
up in working memory within an event, and then is ‘flushed out’ at event boundaries (Radvansky 
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et al., 2011; Richmond and Zacks, 2017; for neural evidence in support of this dynamic, see Ezzyat 
and Davachi, 2011; Chien and Honey, 2020; Ezzyat and Davachi, 2021). This dynamic (which is illus-
trated in the model in Figure 2C) means that the model’s representation of the features of an event 
will be most complete right before the end of the event, making this a particularly advantageous time 
to take an episodic memory snapshot of the situation model.

While it is clear why encoding at the end of an event is useful, it is less clear why encoding at other 
times might be harmful; naively, one might think that storing more episodic snapshots during an event 
would lead to better memory for the event. To answer this question, we compared models that selec-
tively encode episodic memories at the end of each event to models that encode episodic memories 
both at the end of each event and also midway through each event. Note that the model did not learn 
these two encoding policies by itself – we simply configured the model to encode one way or the 
other and compared their performance. If selectively encoding at the end of an event yields better 
performance, this would provide a resource-rational justification for the empirical findings reviewed 
above.

Our simulation shows that in the DM condition, during part 2, models that encode an additional 
episodic memory midway through each event performed worse (Figure 4A). This decrease in perfor-
mance can be explained in terms of several related factors. First, as shown in Figure 4B, when midway 
memories are also stored, midway memories of the target event are recalled more strongly than 
memories formed at the end of the target event.

Figure 4. The advantage of selectively encoding episodic memories at the end of an event. (A) Prediction performance is better for models that 
selectively encode at the end of each event, compared to models that encode at the end of each event and also midway through each event. (B) The 
model performs worse with midway-encoded memories because midway-encoded target memories are activated more strongly than end-encoded 
target memories, thereby blocking recall of the (more informative) end-encoded target memories, and also because midway-encoded lure memories 
are more strongly activated than end-encoded lure memories (see text for additional discussion). (C) The cosine similarity between working memory 
states during part 2 and memories formed midway through part 1 (in orange) or at the end of part 1 (in blue). The result indicates that the midway-
encoded memory will dominate the end-encoded memory for most time points. (D) The time-point-to-time-point cosine similarity matrix between 
working memory states from part 1 versus part 2 in the no memory (NM) condition (part C depicts the orange and blue rows from this matrix). (E) PCA 
plot of working memory states as a function of time, for a large number of events. The plot shows that differences in time within events are represented 
much more strongly than differences across events. The errorbars indicate 1SE across 15 models.
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This advantage occurs because the model’s hidden state strongly encodes temporal context: WM 
states stored at similar times within an event tend to be more similar than WM states stored at different 
times (this illustrated by Figure 4E, which shows that time information within an event is more strongly 
represented than differences across events). This strong temporal coding makes sense, given that the 
model needs to know where it is in the sequence in order to predict which observations will come next 
(for evidence for this kind of temporal coding in the brain, see Pastalkova et al., 2008; MacDonald 
et al., 2011; Salz et al., 2016; Tiganj et al., 2017; for reviews, see Eichenbaum, 2014; Howard and 
Eichenbaum, 2013; for models of this temporal coding, see Shankar and Howard, 2012; Howard 
et al., 2014; Liu et al., 2019). One consequence of this time coding is that – early on in part 2 of the 
event (when the benefits of episodic retrieval are the largest) – the temporal context represented 
in working memory will be a better match for memories encoded midway through the event than 
memories encoded at the end of the event (Figure 4C and D). This temporal context match provides 
a competitive advantage for the midway memory over the endpoint memory, resulting in the midway 
memory blocking the endpoint memory from coming strongly to mind. The second key point is that 
the midway memory is less informative (i.e., it contains fewer features of the situation, because it was 
stored before the full set of features was observed). As such, recalling the midway target memory 
confers less of a benefit on future prediction than recalling the endpoint memory would have provided 
– this is the main reason why prediction is worse in the midway condition. The third key point is that, 
because midway memories contain less information, they are more confusable across events (i.e., it is 
harder to determine which event the memory pertains to). As a result, midway lures tend to become 
more active at retrieval than endpoint lures (Figure 4B) – this lure retrieval acts to further reduce 
prediction accuracy.

A possible alternative explanation of the negative effects of midway encoding is that midway 
encoding was introduced when we tested the model’s performance but was not present during meta-
training (i.e., when the model acquired its retrieval policy); as such, midway encoding can be viewed as 
‘out of distribution’ and may be harmful for this reason. To address this concern, we also ran a version 
of the model where memories were stored both midway and at the end of an event during meta-
training, and it was still true that endpoint-only encoding led to better performance than midway-
plus-endpoint encoding; this result shows that midway encoding is intrinsically harmful, and it is not 
just a matter of it being out-of-distribution. In another simulation, we also found that the harmful 
effect of encoding midway through the sequence qualitatively replicates with more complex event 
structures (analogous to those in Botvinick and Plaut, 2004) where queries are repeated within a 
sequence and the model has to give a different response to the first vs. second occurrence of a query 
(e.g., mood is controlled first by weather and later by music).

To summarize the results from this section, the model does better when we force it to wait until 
the end of an event to take a snapshot. This pattern arises in our simulations because knowledge of 
the ongoing situation builds within an event, so memories encoded earlier in the event contain less 
information about the situation than memories encoded at the end. These less-informative midway 
memories harm performance by interfering with recall of more-informative endpoint memories, and 
are themselves more prone to false recall (because they are more confusable across events). Taken 
together, these simulation results provide a resource-rational justification for the results cited above 
showing preferential encoding-related hippocampal activity at the end of events (Ben-Yakov and 
Dudai, 2011; Ben-Yakov et  al., 2013; Baldassano et  al., 2017; Ben-Yakov and Henson, 2018; 
Reagh et al., 2020).

Discussion
Most of what we know about episodic memory has, by design, come from experiments where perfor-
mance depends primarily on episodic memory (as opposed to other memory systems), and partici-
pants are given clear instructions about when episodic memories should be stored and retrieved (e.g., 
learning and recalling lists of random word pairs); likewise, most computational models of human 
memory have focused on explaining findings from these kinds of experiments (e.g., see Gillund and 
Shiffrin, 1984; Hasselmo and Wyble, 1997; Shiffrin and Steyvers, 1997; Howard and Kahana, 
2002; Norman and O’Reilly, 2003; Sederberg et al., 2008; Polyn et al., 2009; Cox and Criss, 2020; 
for reviews, see Norman et al., 2008; Criss and Howard, 2015). However, as noted in the Intro-
duction, real-world memory does not adhere to these constraints: In naturalistic learning situations, 
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participants are typically not given any instructions about how episodic memory should be used to 
support performance, and – even when participants are given instructions about what to remember 
– performance usually depends on a complex mix of memory systems, with contributions from both 
working memory and semantic memory in addition to episodic memory.

The goal of the present work was to gain some theoretical traction on when episodic memories 
should be stored and retrieved to optimize performance in these more complex situations. Towards 
this end, we optimized a neural network model that learned its own policy for when to consult episodic 
memory (via an adjustable gate) in order to maximize reward, and we also (by hand) explored the 
effects of different episodic memory encoding policies on network performance. Our approach is 
built on the principle of resource rationality, whereby human cognition is viewed as an approximately 
optimal solution to the learning challenges posed by the environment, subject to constraints imposed 
by our cognitive architecture (Griffiths et al., 2015; Lieder and Griffiths, 2019); according to this 
principle, the approximately optimal solutions obtained by our model can be viewed as hypotheses 
about (and explanations of) how humans use episodic memory in complex, real-world tasks.

In the simulations presented here, we identified several ways in which selective policies for episodic 
memory retrieval and encoding can benefit performance. With regard to retrieval, we showed that 
the model learns to avoid episodic retrieval in situations where the risks of retrieval (i.e., retrieving 
the wrong memory, leading to incorrect predictions) outweigh the benefits (i.e., retrieving the correct 
memory, leading to increased correct predictions). For example, when there is high certainty about 
what will be observed next (due to the relevant information being maintained in working memory 
or semantic memory), the marginal benefits of retrieving from episodic memory are too small to 
outweigh the risks of retrieving the wrong memory. Another example is when too little information has 
been observed to pinpoint the relevant memory – in this case, the potential benefits of retrieving are 
high, but the risks of retrieving the wrong memory are also high, leading the model to defer retrieving 
until more information has been observed. With regard to encoding, we showed that waiting until 
the end of an event to encode a memory for that event boosts subsequent prediction performance 
– this performance boost comes from reducing ‘clutter’ (interference) from other memories, thereby 
making it easier to retrieve the sought-after memory. These modeling results explain a wide range 
of existing behavioral and neuroimaging results, and also lead to new, testable predictions. With 
regard to existing results: The model provides a resource-rational account of findings from Chen 
et  al., 2016 showing the demand-sensitivity of episodic retrieval, as well as results showing that 
episodic encoding is modulated by event boundaries (Ben-Yakov and Dudai, 2011; Ben-Yakov et al., 
2013; Baldassano et al., 2017; Ben-Yakov and Henson, 2018; Reagh et al., 2020). Appendix 3 also 
shows how the model explains effects of familiarity on retrieval policy (Duncan et al., 2012; Duncan 
and Shohamy, 2016; Duncan et al., 2019; Patil and Duncan, 2018; Hasselmo and Wyble, 1997). 
With regard to novel predictions: Our model makes predictions about how episodic retrieval will be 
modulated by certainty (Figure 3B, C and D), penalty (Figure 3E), schema strength (Figure 3G), and 
similarity (Appendix 2—figure 1) – all of these predicted relationships could be tested in experiments 
that measure hippocampal-neocortical information transfer, either using measures like hippocampal-
neocortical inter-subject functional connectivity in fMRI (e.g., Chen et al., 2016; Chang et al., 2021) 
or time-lagged mutual information in ECoG (e.g., Michelmann et al., 2021).

More broadly, the simulations presented here show how the model can be used to explore inter-
actions between three distinct memory systems: semantic memory (instantiated in the weights in 
neocortex), working memory (instantiated in the gating policy learned by the neocortical LSTM 
module, allowing for activation at one time point in neocortex to influence activation at subsequent 
time points), and episodic memory. In the past, modelers have focused on these memory systems 
in isolation (see, e.g., Norman et al., 2008), in part because of a desire to understand the detailed 
workings of the systems, but also because of technical limitations: Until very recently, the technology 
did not exist to automatically optimize the performance of networks containing episodic memory, so 
researchers interested in simulating interactions between episodic memory and these other systems 
were put in the position of having to do time-consuming (and frustrating) hand-optimization of 
the models. Here, we leverage recent progress in the artificial intelligence literature on memory-
augmented neural networks (Graves et al., 2016; Pritzel et al., 2017; Ritter et al., 2018; Wayne 
et al., 2018) that makes it possible to automatically optimize the use of episodic memory and its 
interactions with other memory systems. This technical advance has opened up a new frontier in 
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the cognitive modeling of memory (Collins, 2019), making it possible to address both ‘naturalistic 
memory’ scenarios and controlled experiments that involve interactions between prior knowledge 
(semantic memory), active maintenance (working memory), and episodic memory.

Relation to other models
Memory-augmented neural networks with a differentiable neural dictionary
Conceptually, the episodic memory system used in our model is similar to recently-described memory-
augmented neural networks with a differentiable neural dictionary (DND) (Pritzel et al., 2017; Ritter 
et al., 2018; Ritter, 2019). In these models, the data structure of the episodic memory system is 
dictionary-like: Each memory is a key-value pair. The keys define the similarity metric across all memo-
ries, and the values represent the content of these memories. For example, one can use the LSTM cell 
state patterns as the keys and use the final output of the network as the values (Pritzel et al., 2017). 
Ritter et al., 2018 is particularly relevant as it was the first paper (to our knowledge) to use the DND 
for cognitive modeling and – as such – served as a major inspiration for the work presented here (see 
also Botvinick et al., 2019). The way that our model uses the DND mechanism is quite similar to 
how it was used in Ritter et al., 2018; in particular, we took from the Ritter et al., 2018 paper the 
idea that the neocortical network learns to control a ‘gate’ on episodic retrieval via reinforcement 
learning (for an earlier model that also used reinforcement learning to learn a policy for retrieval from 
episodic memory, see Zilli and Hasselmo, 2008). However, there are also some meaningful differ-
ences between our model and the model used by Ritter et al., 2018.

The most salient difference regards the placement of the EM gate: In our model, the gate controls 
the flow of information into the episodic memory module (pre-gating), but in the Ritter model the gate 
controls the flow of information out of the episodic memory module (post-gating). Practically speaking, 
the main consequence of having the gate on the output side is that the gate can be controlled based 
on information coming out of the hippocampus, in addition to all of the neocortical regions that are 
used to control the gate in our pre-gating model. While this is a major difference, we found that our 
key simulation results qualitatively replicate in a version of the model that uses post-gating, indicating 
that the selective encoding and retrieval principles discussed here do not depend on the exact place-
ment of the gate (see Appendix 4 for simulation results and more discussion of these points).

Another difference is that our model’s computation of which memories are retrieved (given a 
particular retrieval cue, assuming that the ‘gate’ on retrieval is open) is more complex. Ritter et al., 
2018 used a one-nearest-neighbor matching algorithm during recall, whereby the stored memory 
with the highest match to the cue is selected for retrieval (assuming that the gate is open). By contrast, 
memory activation in our model is computed using a competitive evidence accumulation process, in 
line with prior cognitive models of retrieval (e.g., Polyn et al., 2009; Sederberg et al., 2008). While 
we did not explore the effects of varying the level of competition in our simulations, having this as 
an adjustable parameter opens the door to future work where the model learns a policy for setting 
competition in order to optimize performance (just as it presently learns a policy for setting the EM 
gate).

A third structural difference between our model and the Ritter et al., 2018 model is our addition 
of the ‘don’t know’ output unit, which (when selected) allows the model to avoid both reward and 
punishment. As discussed above, the primary effect of incorporating this ‘don’t know’ action is to 
make the model more patient (i.e., more likely to wait to retrieve from episodic memory), by giving it 
a way to avoid incurring penalties if it decides to wait to retrieve (for more details, see Appendix 5).

Apart from the structural differences noted above, the main difference between our modeling 
work and the work done by Ritter et al., 2018 relates to the application domain (i.e., which cognitive 
phenomena were simulated). Our modeling work in this paper focused on how episodic memory can 
support incidental prediction of upcoming states, when there is no explicit demand for a decision. By 
contrast, Ritter et al., 2018 focused on how episodic memory can be used to support performance 
in classic decision-making tasks, such as bandit tasks and maze learning, that have been extensively 
explored in the reinforcement learning literature.

The structured event memory (SEM) model
Another highly relevant model is the structured event memory (SEM) model developed by Franklin 
et al., 2020. Like our model, SEM uses RNNs to represent its knowledge of schemas (i.e., how events 
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typically unfold). Also, like our model, SEM records episodic memory traces as it processes events. 
However, there are several key differences between our model and SEM. First, whereas our model 
uses a single RNN to represent a single (contextually parameterized) schema, SEM uses multiple 
RNNs that each represent a distinct schema for how events can unfold. Building on prior work on 
nonparametric Bayesian inference (Anderson, 1991; Aldous, 1983; Pitman, 2006) and latent cause 
modeling (Gershman et al., 2010; Gershman et al., 2015), SEM contains specialized computational 
machinery that allows it to determine which of its stored schemas (each with its own RNN) is relevant 
at a particular moment, and also when it is appropriate to instantiate a new schema (with its own, new 
RNN) to learn about ongoing events. This inference machinery allows SEM to infer when event bound-
aries (i.e., switches in the relevant schema) have occurred; the Franklin et al., 2020 paper leverages 
this to account for data on how people segment events. Our model lacks this inference machinery, so 
we need to impose event boundaries by fiat, as opposed to having the model identify them on their 
own.

Another major difference between the models relates to how episodic memory is used. A key 
focus of our modeling work in this paper is on how episodic memory can support online prediction. 
By contrast, in SEM, episodic memory is not used at all for online prediction – online prediction is 
based purely on the weights of the RNNs (i.e., semantic memory) and the activation patterns in the 
RNNs (i.e., working memory). The sole use of episodic memory in the Franklin et al., 2020 paper 
is to support reconstruction of previously-experienced events. Specifically, in SEM, each time point 
leaves behind a noisy episodic trace; the Franklin et al., 2020 paper shows how Bayesian inference 
can combine these noisy stored episodic memory traces with stored knowledge about how events 
typically unfold (in the RNNs) to reconstruct an event. Effectively, SEM uses knowledge in the RNNs 
to ‘de-noise‘ and fill in gaps in the stored episodic traces. The Franklin et al., 2020 paper uses this 
process to account for several findings relating to human reconstructive memory.

Future directions and limitations
On the modeling side, our work can be extended in several different ways. As noted above, our model 
and SEM have complementary strengths: SEM is capable of storing multiple schemas and doing event 
segmentation, whereas our model only stores a single schema and we impose event boundaries by 
hand; our model is capable of using episodic memory to support online prediction, whereas SEM is 
not. It is easy to see how these complementary strengths could be combined into a single model: By 
adding SEM’s ability to do multi-schema inference to our model, we would be able to simulate both 
event segmentation and the role of episodic memory in predicting upcoming states, and we would 
also be able to explore interactions between these processes (e.g., using episodic memory to predict 
could affect when prediction errors occur, which – in turn – could affect how events are segmented; 
Zacks et al., 2011; Zacks et al., 2007).

Another limitation of the current model is that the encoding policy is not learned. In our simulations, 
we trained models with different (pre-specified) encoding policies and compared their performance. 
Going forward, we would like to develop models that learn when to encode through experience, 
instead of imposing encoding policies by hand. Our results show that selective encoding can yield 
better performance than encoding everything, so – in principle – selective encoding policies should 
be learnable with RL. The main challenge in learning encoding policies is the long temporal gap 
between the decision to encode (or not) and learning the consequences of that choice for retrieval. 
Moreover, a high-quality encoding policy, taken on its own, generally does not lead to high reward 
when the retrieval policy is bad; that is, encoding policy and retrieval policy have to be learned in a 
highly coordinated fashion. Recent technical advances in RL (e.g., algorithms that do credit assign-
ment across long temporal gaps; Raposo et al., 2021) may make it easier to address these challenges 
going forward.

A benefit of being able to learn encoding policies in response to different task demands is that the 
model could discover other factors that it could use to modulate encoding – for example, surprise. 
Numerous studies have found improved memory for surprising events (e.g., Greve et  al., 2017; 
Greve et al., 2019; Quent et al., 2021a; Kafkas and Montaldi, 2018; Frank et al., 2020; Rouhani 
et al., 2018; Rouhani et al., 2020; Chen et al., 2015a; Pine et al., 2018; Antony et al., 2021; for 
reviews, see Frank and Kafkas, 2021a; Quent et al., 2021b) – these behavioral results converge with 
a large body of literature showing increased hippocampal engagement in response to prediction error 
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(e.g., Axmacher et al., 2010; Chen et al., 2015a; Long et al., 2016; Kumaran and Maguire, 2006; 
Kumaran and Maguire, 2007; Duncan et al., 2012; Davidow et al., 2016; Kafkas and Montaldi, 
2015; Frank et al., 2021b; for reviews, see Frank and Kafkas, 2021a; Quent et al., 2021b), and 
also with a recent fMRI study showing that prediction error biases hippocampal dynamics towards 
encoding (Bein et al., 2020). Given that studies have found a strong relationship between surprise 
and event segmentation (e.g., Zacks et al., 2011; Zacks et al., 2007; for a recent example see Antony 
et al., 2021), it seems possible that increased episodic encoding at the ends of events could be driven 
by peaks in surprise that occur at event boundaries. However, there are complications to this view; in 
particular, some recent work has argued that not all event boundaries are surprising (Schapiro et al., 
2013) – in light of this, more research is needed to explore the relationship between these effects.

In addition to surprise, recent work by Sherman and Turk-Browne, 2020 suggests that predictive 
certainty may play a role in shaping encoding policy: They found that stimuli that trigger strong predic-
tions (i.e., high certainty about upcoming events) are encoded less well. In keeping with this point, 
Bonasia et al., 2018 found that, during episodic encoding, events that were more typical (and thus 
were associated with more predictive certainty, and less surprise) were associated with lower levels of 
medial temporal lobe (MTL) activation. Intuitively, it makes sense to focus episodic encoding on time 
periods where there is high surprise and low predictive certainty – if events in a sequence are unsur-
prising and associated with high predictive certainty, this means that existing (neocortical) schemas 
are sufficient to reconstruct that event, and no new learning is necessary (or, if learning is required, 
it is possible that neocortex could handle this ‘schema-consistent’ learning on its own; McClelland, 
2013; McClelland et al., 2020). Conversely, if events in a sequence do not follow a schema (leading 
to uncertainty) or violate that schema (leading to surprise), the only way to predict those events later 
will be to store them in episodic memory. Future work can explore whether a model that represents 
surprise and certainty (either implicitly or explicitly) can learn to leverage one or both of these factors 
when deciding when to encode; our present model is a good place to start in this regard, as we have 
already demonstrated the model’s ability to factor certainty into its retrieval policy.

Another major simplification in the model’s encoding policy is that it stores each episodic memory 
as a distinct entity (see Figure  1B). Old memories are never overwritten or updated. However, a 
growing literature on memory reconsolidation suggests that memory reminders can result in partic-
ipants accessing an existing memory and then updating that memory, rather than forming a new 
memory outright (Dudai and Eisenberg, 2004; Dudai, 2009; Hardt et al., 2010; Wang and Morris, 
2010). In the future, we would like to develop models that decide whether to encode a new episodic 
memory or update an old memory. We could implement this by having the model try to retrieve before 
it encodes a new memory; if it succeeds in retrieving a stored memory above a certain threshold level 
of activation, the model could update that memory rather than creating a new memory. In future work, 
we plan to implement this mechanism and use it to simulate memory reconsolidation data.

Going forward, we also hope to explore more biologically-realistic episodic memory models 
(e.g., Hasselmo and Wyble, 1997; Schapiro et  al., 2017; Norman and O’Reilly, 2003; Ketz 
et al., 2013). Using a more biologically realistic hippocampus could affect the model’s predictions 
(e.g., if memory traces were allowed to interfere with each other during storage – currently they 
only interfere at retrieval) and it would also improve our ability to connect the model to neural data 
on hippocampal codes and how they change with learning (e.g., Duncan and Schlichting, 2018; 
Brunec et al., 2020; Ritvo et al., 2019; Favila et al., 2016; Chanales et al., 2017; Schlichting 
et al., 2015; Whittington et al., 2020; Stachenfeld et al., 2017; Hulbert and Norman, 2015; 
Kim et al., 2017; Schapiro et al., 2012; Schapiro et al., 2016). Similarly, using a more biologically-
detailed neocortical model (separated into distinct neocortical sub-regions) could help us to 
connect to data on how different neocortical regions interact with hippocampus during event 
processing (e.g., Ranganath and Ritchey, 2012; Cooper and Ritchey, 2020; Ritchey and Cooper, 
2020; Barnett et al., 2020; Gilboa and Marlatte, 2017; van Kesteren et al., 2012; Preston and 
Eichenbaum, 2013). More generally, the simplified nature of the present model (e.g., using rate-
coded neurons, training with gradient descent) limits its ability to connect to circuit-level data. 
Including more detailed circuit-level mechanisms would allow us to leverage the wealth of data 
that exist at this level to constrain the model. For example, work by Hasselmo and colleagues 
has shown how cholinergic projections from the basal forebrain to the hippocampus can shift 
hippocampal dynamics between encoding and retrieval based on whether the retrieval cue is 

https://doi.org/10.7554/eLife.74445


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Lu et al. eLife 2022;11:e74445. DOI: https://doi.org/10.7554/eLife.74445 � 18 of 43

novel or familiar (Hasselmo et al., 1995; Hasselmo et al., 1996; Hasselmo and Wyble, 1997); 
this work could be used to inform our simulations (discussed in Appendix 3) of how familiarity 
signals modulate hippocampal retrieval policy. We have opted to start with the simplified episodic 
memory system described in this paper both for reasons of scientific parsimony and also for prac-
tical reasons – adding additional neurobiological details would make the model run too slowly (the 
current model takes on the order of hours to run on standard computers; adding more complexity 
would shift this to days or weeks).

Just as our model contains some key simplifications, the environment used in the event processing 
task is relatively simple and do not capture the full richness of naturalistic events. Some recent studies 
have explored event graphs with more realistic structure (e.g., Elman and McRae, 2019). The fact that 
our model can presently only handle one schema substantially limits the complexity of the sequences 
it can process; adding the ability to handle multiple schemas (as discussed above) will help to address 
this limitation. Also, natural events unfold over multiple timescales. For example, going to the parking 
lot is an event that involves finding the key, getting to the elevator, etc., but this can be viewed as part 
of a higher-level event, such as going to an airport. In our simulation, events only have one timescale. 
In general, introducing additional hierarchical structure to the stimuli would enrich the task demands 
and lead to interesting modeling challenges. For now, we have avoided more complex task environ-
ments for computational tractability reasons, but – as computational resources continue to grow – we 
hope to be able to investigate richer and more realistic task environments going forward. At the same 
time, we also plan to use the model to address selective retrieval and encoding effects in list-learning 
studies (e.g., the aforementioned studies showing that surprise boosts encoding; for reviews, see 
Frank and Kafkas, 2021a; Quent et al., 2021b).

Another limitation of the model is that the policies explored here (having to do with when 
episodic memory snapshots are stored and retrieved) do not encompass the full range of ways in 
which the use of episodic memory can be optimized. For example, in addition to questions about 
when to encode and retrieve, one can consider optimizations of what is stored in memory and 
how memory is cued. These kinds of optimizations are evident in mnemonic techniques like the 
method of loci (Yates, 1966), which involve considerable recoding of to-be-learned information (to 
maximize distinctiveness of stored memories) and also structured cuing strategies (to ensure that 
these distinctive memory traces can be found after they are stored). We think that the kinds of poli-
cies explored in this paper (e.g., retrieving more when uncertain, encoding more at the end of an 
event) fall more on the ‘automatic’ end of the spectrum, as evidenced by the fact that they require 
no special training and are deployed even in incidental learning situations (e.g., while people are 
watching a movie, without specifically trying to remember it; Chen et al., 2016; Baldassano et al., 
2017). As such, these policies seem very different from more complex and deliberate kinds of 
mnemonic strategies like method of loci that require special training. However, we think that it is 
best to view our ‘simple’ policies and more complex strategies as falling on a continuum. While the 
policies we discuss may be deployed automatically in adults, our simulations show that at least some 
of these policies (e.g., modulating episodic retrieval based on predictive certainty) can be learned 
through experience, and indeed these strategies might not (yet) be automatic in young children. 
Furthermore, in principle, there is nothing stopping a model like ours from learning more elaborate 
strategies given the right kinds of experience and a rich enough action space. Expanding the space 
of ‘memory use policies’ for our model and exploring how these can be learned is an important 
future direction for this work (for a resource-rational approach to memory search, see Zhang et al., 
2021).

Lastly, although we have focused on cognitive modeling in this paper, we think that some of our 
results have implications for machine learning more broadly. For example, most memory-augmented 
neural networks used in machine learning encode at each time point (Graves et al., 2014; Graves 
et al., 2016; Ritter et al., 2018; Pritzel et al., 2017). Our results provide initial evidence that taking 
episodic ‘snapshots’ too frequently can actually harm performance. Future work can explore the 
circumstances under which more selective encoding and retrieval policies might lead to improved 
performance on machine learning benchmarks. Based on our simulations, we expect that these selec-
tive policies will be most useful when there is a substantial risk of recalling lure memories that lead to 
incorrect predictions, and a substantial cost associated with making these incorrect predictions.
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Summary
The modeling work presented here builds on a wide range of research showing that episodic memory 
is a resource that the brain can flexibly draw upon to solve tasks (see, e.g., Shohamy and Turk-
Browne, 2013; Palombo et al., 2019; Palombo et al., 2015; Bakkour et al., 2019; Biderman et al., 
2020). This view implies that, in addition to studying episodic memory using tasks that probe this 
system in isolation, it is also valuable to study how episodic memory is used in more complex situa-
tions, in concert with working memory and semantic memory, to solve tasks and make predictions. To 
engage with findings of these sort, we have leveraged advances in AI that make it possible for models 
to learn how to use episodic memory – our simulations provide a way of predicting how episodic 
memory should be deployed to obtain rewards, as a function of the properties of the learning envi-
ronment. While our understanding of these more complex situations is still at an early stage, our hope 
is that this model (and others like it, such as the model by Ritter et al., 2018) can spur a virtuous cycle 
of predictions, experiments, and model revision that will bring us to a richer understanding of how the 
brain uses episodic memory.

Methods
Episodic retrieval
Episodic retrieval in our model is content-based. The retrieval process returns a weighted average 
of all episodic memories, where the weight of each memory is equal to its activation; to calculate 
the activation for each memory, the model executes an evidence accumulation process using a leaky 
competing accumulator (LCA; Usher and McClelland, 2001), which has been used in other memory 
models (e.g., Sederberg et al., 2008; Polyn et al., 2009). The evidence for a given episodic memory 
is the cosine similarity between that memory and the current neocortical pattern (the cell state of the 
LSTM). Hence, memories that are similar to the current neocortical pattern will have a larger influence 
on the pattern that gets reinstated.

The evidence accumulation process is governed by the episodic memory gate (EM gate) and 
the level of competition across memories (Figure 1C), which are stored separately from each other 
(Figure 1B). The EM gate is controlled by the neocortical network (Figure 1A and C). The EM gate, 
in turn, controls whether episodic retrieval happens – a higher EM gate value increases the activation 
of all memories, and setting the EM gate value to zero turns off episodic retrieval completely (see 
Appendix 4 for discussion of other ways that gating can be configured). The level of competition (i.e., 
lateral inhibition) adjusts the contrast of activations across all memories; making the level of compe-
tition higher or lower interpolates between one-winner-take-all recall versus recalling an average of 
multiple memories. In all of our simulations, we set the level of competition to be well above zero (0.8, 
to be exact), given the overwhelming evidence that episodic retrieval is competitive (Anderson and 
Reder, 1999; Norman and O’Reilly, 2003; Norman, 2010).

Note that, instead of optimizing the LCA parameters to fit empirical results (e.g., as in the work by 
Polyn et al., 2009), we use a neural network that learns to control the level of the EM gate value. As 
described below, in the Model training and testing section, the model’s goal is to maximize reward by 
making correct predictions and avoiding incorrect predictions; the network learns a policy for setting 
the EM gate value that maximizes the reward it receives. We made several simplifications to the orig-
inal LCA – in our model, the LCA (1) has no leak; (2) has no noise; and (3) uses the same EM gate value 
and competition value for all accumulators.

Episodic retrieval - detail
At time ‍t‍, assume the model has ‍n‍ memories. The model first computes the evidence for all of the 
memories. The evidence for the i-th memory, ‍mi‍, is the cosine similarity between the current LSTM cell 
state pattern ‍ct‍ and that episodic memory – which is a previously saved LSTM cell state pattern. We 
denote the evidence for the i-th memory as ‍xi‍:

	﻿‍ xi = cosine
(
ct, mi

)
‍�

The ‍xi‍, for all i, are the input to the evidence accumulation (LCA) process used in our model; the 
evidence accumulation process has a timescale ‍τ ‍ that is faster than ‍t‍, such that the accumulation 
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process runs to completion within a single time point of the neocortical model. The computation at 
time ‍τ ‍ (for ‍τ > 0‍) is governed by the following formula:

	﻿‍

wi
τ = relu


αxi − β

∑
j̸=i

wj
τ




‍�

‍wi
τ ‍ is the activation value for the i-th memory at time ‍τ ‍; these activations are set to zero initially 

(‍w
i
0 = 0‍, for all i). The activation for the i-th memory is positively related to its evidence, ‍xi‍, and is multi-

plicatively modulated by ‍α‍, the EM gate value. The i-th memory also receives inhibition from all of the 
other memories, where the level of inhibition is modulated by the level of competition, ‍β‍. Finally, the 
retrieved item at time ‍t‍, denoted by ‍µt‍, is a combination of all memories, weighted by their activation:

	﻿‍
µt =

n∑
i=1

wimi
‍�

Model training and Testing
Model training
Before the model is used to simulate any particular experiment, it undergoes a meta-training phase 
that is meant to reflect the experience that a person has prior to the experiment. The goal of this 
meta-training phase is to let the model learn (1) the structure of the task – how situation features 
control the transition dynamics across states; and (2) a policy for retrieving episodic memories and for 
making next-state predictions that maximizes the reward it receives. For every epoch of meta-training, 
it is trained for all three conditions (recent memory, distant memory, and no memory).

The model is trained with reinforcement learning. Specifically, the model is rewarded/penalized if 
its prediction about the next state is correct/incorrect. The model also has the option of saying ‘don’t 
know’ (implemented as a dedicated output unit) when it is uncertain about what will happen next; if 
the model says ‘don’t know’, the reward is zero. The inclusion of this ‘don’t know’ unit is what moti-
vated us to use reinforcement learning as opposed to purely supervised training. We expected that 
the optimal way to deploy this action would vary in complex ways as a function of different parame-
ters (e.g., the penalty on incorrect responding), and we did not want to presume that we knew what 
the best policy would be. Consequently, we opted to let the model learn its own policy for using the 
‘don’t know’ action, rather than imposing a policy through supervised training (see Appendix 5 for 
results from a variant of the model where we omit the ‘don’t know’ unit and train the model in a purely 
supervised fashion; these changes make the model less patient – i.e., retrieval takes place earlier in 
the sequence – but otherwise the results are qualitatively unchanged).

The model is trained with the advantage actor-critic (A2C) objective (Mnih et al., 2016). At time ‍t‍, 
the model outputs its prediction about the next state, ‍̂st+1‍, and an estimate of the state value, ‍vt‍. After 
every event (i.e., a sequence of states of length ‍T ‍), it takes the following policy gradient step to adjust 
the connection weights for all layers, denoted by ‍θ‍:

	﻿‍
∇θJ(θ) = ∇

[ T∑
t=0

logπθ
(
ŝt+1|st

) (
rt − vt

)
− ηH

(
πθ (̂st+1|st)

)]

‍�

where ‍J ‍ is the objective function with respect to ‍θ‍ (the network weights). ‍πθ‍ is the policy repre-
sented by the network weights. ‍H ‍ is the entropy function that takes a probability distribution and 
returns its entropy. ‍η‍ controls the strength of entropy regularization.

The objective function ‍J ‍ makes rewarded actions (next-state predictions) more likely to occur; 
the above equation shows how this process is modulated by the level of reward prediction error – 
measured as the difference between the predicted value, ‍vt‍, versus the reward at time ‍t‍, denoted by 
‍rt‍. We also used entropy regularization on the network output (Grandvalet and Bengio, 2006; Mnih 
et al., 2016) to encourage exploration in the early phase of the training process – with a positive ‍η‍, 
the objective will encourage weight changes that lead to higher entropy distributions over actions.

We used the A2C method (Mnih et al., 2016) because it is simple and has been widely used in 
cognitive modeling (Ritter et al., 2018; Wang et al., 2018). Notably, there is also evidence that an 
actor-critic style system is implemented in the neocortex and basal ganglia (Takahashi et al., 2008). 
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Since pure reinforcement learning is not data-efficient enough, we used supervised initialization 
during meta-training to help the model develop useful representations (Misra et al., 2017; Nagab-
andi et al., 2018). Specifically, the model is first trained for 600 epochs to predict the next state and 
to minimize the cross-entropy loss between the output and the target. During this supervised pre-
training phase, the model is only trained on the recent memory condition and the episodic memory 
module is turned off, so this supervised pre-training does not influence the network’s retrieval policy. 
Additionally, the ‘don’t know’ output unit is not trained during the supervised pre-training phase – as 
noted above, we did this because we want the model to learn its own policy for saying ‘don’t know’, 
rather than having one imposed by us. Next, the model is switched to the advantage actor-critic 
(A2C) objective (Mnih et al., 2016) and trained for another 400 epochs, allowing all weights to be 
adjusted. The number of training epochs was picked to ensure the learning curves converge. For both 
the supervised-pretraining phase and the reinforcement learning phase, we used the Adam optimizer 
(Kingma and Ba, 2014) with learning rate of 7e-4 (for more details, please refer to Appendix 7).

Stimulus representation
At time ‍t‍, the model observes a situation feature, and then it gets a query about which state will 
be visited next. Specifically, the input vector at time ‍t‍ has four components (see Figure 5): (1) The 
observed situation feature (sticking with the example in Figure  2, this could be something like 
‘weather’) is encoded as a ‍T ‍-dimensional one-hot vector. ‍T ‍ is the total number of situation features, 
which (in most simulations) is the same as the number of time points in the event. The ‍t‍-th one-hot 
indicates the situation feature governing the transition at time ‍t‍. (2) The value of the observed situation 

Figure 5. The stimulus representation for the event processing task. In the event processing task, situation features 
are observed in different, random orders during part 1 and part 2, but queries about those features are presented 
in the same order during part 1 and part 2. The green boxes in panel A indicate time points where the model 
observed the value of the first feature (time point 13 during part 1, and time point 15 during part 2). The yellow 
boxes indicate time points where the model was queried about the value of the first feature (time point zero during 
both part 1 and part 2).
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feature (e.g., learning that the weather is sunny) is encoded as a B-dimensional one-hot vector, where 
‍B‍ is the number of possible next states at time ‍t‍. (3) The queried situation feature is encoded as 
another ‍T ‍-dimensional one-hot vector (note that querying the model about the value of the feature 
that controls the next-state transition is equivalent to querying the model about the next state, given 
that there is a 1-to-1 mapping between feature values and states within a time point; see Figure 2A).
(4) Finally, the model also receives the current penalty level for incorrect predictions as a scalar input, 
which can change across trials. Overall, the input vector at time ‍t‍ is ‍2T + B + 1‍ dimensional. At every 
time point, there is also a target vector of length ‍B‍ that specifies the value of the queried feature (i.e. 
the ‘correct answer’ that the model is trying to predict). The model outputs a vector of length ‍B + 1‍: 
The first ‍B‍ dimensions correspond to specific predictions about the next state, and the last output 
dimension corresponds to the ‘don’t know’ response.

In our simulation, the length of an event is 16 time points (i.e., ‍T ‍ = 16), and the number of possible 
states at each time point is 4 (i.e., ‍B‍ = 4). Hence the chance level for next-state prediction is 1/4. 
Figure 5 illustrates the stimuli provided to the model for a single example trial. Note that the queries 
(about the next state) are always presented in the same order, so there is a diagonal on the queried 
feature matrix. This captures the sequential structure of events (e.g., ordering food always happens 
before eating the food). However, the order in which the situation features are observed is random. As 
a result, sometimes a feature is queried after it was observed, in which case the model can rely on its 
working memory to produce the correct prediction, and sometimes a feature is queried before it was 
observed, in which case the model needs to use episodic memory (if a relevant memory is available) 
to produce the correct prediction.

As discussed above, the input vector specifies the level of penalty (for incorrect prediction) for the 
current trial. During meta-training, the penalty value was randomly sampled on each trial from the 
range between 0 and 4. During meta-testing, we evaluated the model using a penalty value of 2 (the 
average of the penalty values used during training). To understand the effect of penalty on retrieval 
policy, we also compared the timing of recall in the model when the penalty during meta-testing was 
low (penalty = 0) vs. high (penalty = 4; Figure 3F).

In our simulations, during meta-training, the model only got to observe 70% of the features of the 
ongoing situation during part 1 of the sequence. This was operationalized by giving each feature a 
30% probability of being removed during part 1; for time points where the to-be-observed feature 
was removed, the model observed a zero vector instead. This ‘feature removal’ during part 1 of the 
sequence made the task more realistic, since – in general – past information does not fully inform what 
will happen in the future (during meta-testing, we did not remove any observations during part 1; 
this makes the results graphs easier to interpret, but has no effect on the conclusions reported here).

Finally, we wanted to make sure the model could adjust its retrieval time flexibly, instead of learning 
to always retrieve at a fixed time point (e.g., always retrieve at the third time point). Therefore, during 
training, we delayed the prediction demand by a random number of time points (from 0 to 3). For 
example, if the amount of delay was two in a given trial, then the model observed two situation 
features before it received the first query.

Model Testing
During meta-testing (i.e., model evaluation; when simulating a particular experiment), the weights 
of the neocortical part of the model (i.e., all weights pertaining to the LSTM, decision layer, and 
EM gate) were frozen, but the model was allowed to form new episodic memories. In any given 
trial (where the model observed several events), new learning of information completely relied 
on working memory (i.e., model’s recurrent dynamics), episodic memory in the episodic module, 
and semantic memory encoded in the (frozen) neocortical connection weights (instantiating the 
model’s knowledge of transitions between states and how these transitions are controlled by situa-
tion features). The results shown in all the simulations were obtained by testing the model with new, 
randomly-generated events, after the initial meta-training phase. While it is theoretically possible 
that these test events could duplicate events that were encountered during meta-training, exact 
repeats will be very rare due to the combinatorics of the stimuli (as noted earlier, there are 416 
possible sequences of states within an event). For more information on model parameters, see 
Appendix 7.

https://doi.org/10.7554/eLife.74445
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Decoding the working memory state
In Figure 2C, we used a decoding approach to track what information the model was maintaining 
in working memory over time while it processes an event. This approach allowed us to assess the 
model’s ability to hold on to observed features after they were observed, and also to detect when 
features were retrieved from episodic memory and loaded back up into working memory. Our use of 
decoders here is analogous to the widespread use of multivariate pattern analysis (MVPA) methods 
to decode the internal states of participants from neuroimaging data (Haxby et al., 2001; Norman 
et al., 2006; Lewis-Peacock and Norman, 2014) – the only difference is that, here, we applied the 
decoder to the internal states of the model instead of applying it to brain data.

Specifically, we trained classifiers on LSTM cell states during part 1 to decode the feature values 
over time. Each situation feature was given its own classifier (logistic regression with L2 penalty). 
For example, if ‘weather’ was one of the situation features, we would train a dedicated ‘weather’ 
classifier that takes the LSTM cell state and predicts the value of the weather feature for a given 
time point. To set up the targets for these classifiers for part 1, we labeled all time points before the 
model observed the feature value as ‘don’t know’. After a feature value was revealed, we labeled 
that time point and the following time points with the value of that feature (e.g., if the weather 
feature value was observed to be ‘rainy’ on time point 4, then time point four and all of those that 
followed until the end of part 1 of the sequence were labeled with the value ‘rainy’). For part 2 data, 
we assumed all features were reinstated to the model’s working memory state after the EM gate 
value peaked. This labeling scheme assumes that (1) observed features are maintained in working 
memory and (2) episodic recall brings back previously encoded information. These assumptions can 
be tested by applying the classifier to held-out data. When decoding working memory states during 
part 1 of the sequence, we used a fivefold cross-validation procedure, and picked the regularization 
parameter with an inner-loop cross-validation. All results were generated using held-out test sets. 
The average decoding accuracy was 91.58%. Note that, as mentioned above, there is no guarantee 
that features observed earlier in the sequence will be maintained in the model’s working memory. 
As such, below-ceiling decoding accuracy could reflect either (1) failure to accurately decode the 
contents of working memory or (2) the decoder accurately detecting a working memory failure (i.e., 
that the feature in question has ‘dropped out’ of the model’s working memory, despite having been 
observed earlier in the sequence).

Code
Github repo: https://github.com/qihongl/learn-hippo (Lu, 2022; copy archived at 
swh:1:rev:6a4a1be4fd6780d4c8413ffc6b1facade4741135).
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Appendix 1
The internal representation of the decision layer
To explore how neural activity patterns in the decision layer differed as a function of certainty, we 
plotted the activity patterns as a function of the action taken by the model (i.e., whether it predicted 
one of the four upcoming states, or whether it used the ‘don’t know’ response). Appendix 1—figure 
1 shows the results of this analysis: Uncertain states are approximately clustered near the center of 
the activation space (with a lower L2 norm) while other responses are farther away, which indicates 
that uncertainty in our model is represented by the absence of evidence towards any particular 
choice. Importantly, this difference in activity patterns is not built-in to the model – it simply emerges 
during training.

Appendix 1—figure 1. How certainty is represented in the model’s activity patterns. Panels A and B show the 
neural activity patterns from the decision layer in the distant memory (DM) condition, projected onto the first 
two principal components. Each point corresponds to the pattern of neural activity for a trial at a particular time 
point. We colored the points based on the output (i.e., ‘choice‘) of the model, which represents the model’s belief 
about which state will happen next. Patterns that subsequently led to ‘don’t know‘ responses are colored in grey. 
Panel A shows an early time point with substantial uncertainty (a large number of ‘don’t know‘ responses). Panel 
B shows the last time point of this event, where the model has lower uncertainty. Panel C shows the average L2 
norm of states that led to ‘don’t know‘ responses (uncertain) versus states that led to specific next-state predictions 
(certain); the errorbars indicate 1SE across 15 models. States corresponding to ‘don’t know‘ responses are 
clustered in the center of the activation space, with a lower L2 norm.

https://doi.org/10.7554/eLife.74445
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Appendix 2
Effects of event similarity on retrieval policy
In this simulation, we studied how the similarity of event memories in the training environment 
affects retrieval policy. To manipulate memory similarity, we varied the proportion of shared situation 
feature values across events during training. In the low-similarity condition, the similarity between 
the distractor situation (i.e., situation A; see Figure 2 in the main text) and the target situation was 
constrained to be less than 40%, so target memories and lures were relatively easy to distinguish. In 
the high-similarity condition, the similarity between the distractor situation and the target situation 
was constrained to fall between 35% and 90%. We used a rejection sampling approach to implement 
these similarity bounds – during stimulus generation, we kept generating distractor situations until 
they fell within the similarity bounds with respect to the target sequence. Otherwise, the simulation 
parameters were the same as the parameters that were used in the main text.
In the high-similarity condition, target and lure memories were more confusable, and thus the risk of 
lure recall was higher. In light of this, we expected that the model would adopt a more conservative 
retrieval policy (i.e., retrieving less) in the high-similarity condition. We also expected that this effect 
would be stronger when the penalty is high; when the penalty is low, there is less of a cost for 
recalling the lure memory, and thus less of a reason to refrain from episodic retrieval in the high-
similarity condition.
We compared the model’s behavior as a function of penalty and similarity. For the penalty 
manipulation, each model was trained on a range of penalty values from 0 to 4, then tested on low 
(0), moderate (2), and high (4) penalty values. Appendix 2—figure 1 shows the average level of 
memory activation in each of the conditions. As expected, memory activation is lower in the high-
similarity condition, especially when the penalty is high. Notably, increasing penalty reduces memory 
activation in the high-similarity condition (where the risk of false recall is high) but it does not have 
this effect in the low-similarity condition (where the risk of false recall is low).

Appendix 2—figure 1. Memory activation during part 2 (averaged over time) in the DM condition, for models 
trained in low vs. high event-similarity environments and tested with penalty values that were low (penalty = 0), 
moderate (penalty = 2), or high (penalty = 4). The model recalls less when similarity is high (vs. low), and this effect 
is larger for higher penalty values. The errorbars indicate 1SE across 15 models.

https://doi.org/10.7554/eLife.74445
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Appendix 3

Effects of familiarity on retrieval policy
Prior work has demonstrated that neocortex is capable of computing a scalar familiarity signal 
that discriminates between previously-encountered and novel stimuli (Yonelinas, 2002; Norman 
and O’Reilly, 2003; Holdstock et  al., 2002); likewise, signals can be extracted from models of 
the hippocampus that discriminate between novel and familiar stimuli (e.g., Hasselmo and Wyble, 
1997; see Norman, 2010 for a comparison of the properties of these neocortical and hippocampal 
signals). In this section, we study how familiarity signals can support episodic retrieval policy. Relevant 
to this point, several recent studies in humans have found that encountering a familiar stimulus can 
temporarily shift the hippocampus into a ‘retrieval mode’ where it is more likely to retrieve episodic 
memories in response to available retrieval cues (Duncan et al., 2012; Duncan and Shohamy, 2016; 
Duncan et al., 2019; Patil and Duncan, 2018). Here, we assess whether our model can provide a 
resource-rational account of these ‘retrieval mode’ findings.
Intuitively, familiarity can guide episodic retrieval policy by providing an indication of whether a 
relevant episodic memory is available. If an item is unfamiliar, this signals that it is unlikely that 
relevant episodic memories exist, hence the expected benefit of retrieving from episodic memory 
is low (if there are no relevant episodic memories, episodic retrieval can only yield irrelevant 
memories, which lead to incorrect predictions); and if an item is familiar, this signals that relevant 
episodic memories are likely to exist and hence the benefits of retrieving from episodic memory 
are higher. These points suggest that the model would benefit from a policy whereby it adopts a 
more liberal criterion for retrieving from episodic memory when stimuli are familiar as opposed to 
novel.
To test this, we ran simulations where we presented a ‘ground truth’ familiarity signal to the model 
during part 2 of the sequence. The familiarity signal was presented using an additional, dedicated 
input unit (akin to how we present penalty information to the model). Specifically, during part 2, if 
the ongoing situation had been observed before (as was the case in the RM and DM conditions), the 
familiarity signal was set to one. In contrast, if the ongoing situation was novel (as was the case in 
the NM condition), then the familiarity signal was set to negative one. Before part 2, the familiarity 
signal was set to zero (an uninformative value). Other than these changes, the parameters of this 
simulation were the same as the other simulations. The model was tested on penalty value of 2 – 
the average of the training range. Note that our treatment of the familiarity signal here deliberately 
glosses over the question of how this signal is generated, as this question is addressed in detail in 
other models (e.g., Norman and O’Reilly, 2003; Hasselmo and Wyble, 1997); our intent here is to 
understand the consequences of having a familiarity signal (however it might be generated) for the 
model’s episodic retrieval policy.
Appendix  3—figure 1 and Appendix  3—figure 2 illustrate prediction performance, memory 
activation, and EM gate values for models with and without the familiarity signal. When the 
model has access to a veridical familiarity signal ( + 1 for RM and DM, –1 for NM), it opens the EM 
gate immediately and strongly in the DM condition (Appendix 3—figure 2D), leading to higher 
activation of both the target memory and the lure (Appendix 3—figure 2A) in the DM condition, 
relative to models without the familiarity signal (Appendix 3—figure 2B). Behaviorally, models with 
the familiarity signal show both a higher correct prediction rate and a slightly higher error rate 
in the DM condition, compared to models without the familiarity signal (Appendix 3—figure 1A 
vs. B). This slight increase in errors occurs because, when the model retrieves immediately from 
episodic memory during part 2, the model (in some cases) has not yet made enough observations 
to distinguish the target and the lure. In the NM condition, with the familiarity signal, the model 
keeps the EM gate almost completely shut (Appendix 3—figure 2D). Consequently, the level of 
memory activation stays very low in the NM condition (Appendix 3—figure 2A), which reduces the 
error rate in the NM condition to zero (Appendix 3—figure 1A). The RM condition is an interesting 
case: Previously (see Figure 3 in the main text), we found that the model refrained from episodic 
memory retrieval in the RM condition; we found that the same pattern is present here, even when 
we make a familiarity signal available to the model: EM gate and memory activation values are both 
very low (Appendix 3—figure 2A and D), similar to models without access to the familiarity signal 
(Appendix  3—figure 2B and E). This shows that model does not always retrieve from episodic 
memory when given a high familiarity signal – in this case, the presence of relevant information in 
working memory (which suppresses episodic retrieval) ‘overrides’ the presence of the familiarity 
signal (which enhances episodic retrieval in the DM condition).

https://doi.org/10.7554/eLife.74445
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Appendix 3—figure 1. The familiarity signal can improve prediction. Next-state prediction performance for 
models with (A) vs. without (B) access to the familiarity signal. With the familiarity signal (A), the model shows (1) 
higher levels of correct prediction in the DM condition, and (2) a reduced error rate in the NM condition. The 
errorbars indicate 1SE across 15 models.

Appendix 3—figure 2. Episodic retrieval is modulated by familiarity. This figure shows the memory activation 
and EM gate values over time for three conditions: (1) with the familiarity signal (A, D), (2) without the familiarity 
signal (B, E), and (3) with a reversed (opposite) familiarity signal at test (C, F). With the familiarity signal (A), the 
model shows higher levels of recall in the DM condition, and suppresses recall even further in the NM condition, 
compared to the model without the familiarity signal (B). This is due to the influence of the EM gate – the model 
with the familiarity signal retrieves immediately in the DM condition, and turns off episodic retrieval almost 
completely in the NM condition (D). Note also that levels of episodic retrieval in the RM condition stay low, even 
with the familiarity signal (see text for discussion). Finally, parts C and F show that reversing the familiarity signal at 
test suppresses recall in the DM condition and boosts recall in the NM condition. The errorbars indicate 1SE across 
15 models.

Finally, we can trick the model into reversing its retrieval policy by reversing the familiarity signal 
at test (Appendix 3—figure 2C and F). In this condition, the (reversed) signal indicates that the 
ongoing situation is novel (–1) in the RM and the DM condition, and the ongoing situation is familiar 
(+1) in the NM condition. As a result, the model suppresses episodic retrieval in the RM and DM 
conditions, and recalls lures in the NM condition.

https://doi.org/10.7554/eLife.74445


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Lu et al. eLife 2022;11:e74445. DOI: https://doi.org/10.7554/eLife.74445 � 35 of 43

Overall, the results of this simulation show that our model is able to use a familiarity signal to inform 
its retrieval policy in the service of predicting upcoming states. Consistent with empirical results 
(Duncan et al., 2012; Duncan and Shohamy, 2016; Duncan et al., 2019; Patil and Duncan, 2018), 
we found that the model retrieves more from episodic memory when the ongoing situation is familiar, 
unless the model has low uncertainty about the upcoming state. These modeling results provide a 
resource-rational account of why familiarity leads to enhanced episodic retrieval.

https://doi.org/10.7554/eLife.74445
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Appendix 4
Alternative configurations of episodic memory gating
In the simulations described in the main text, the EM gate controls the input into the EM system. An 
alternative way of accomplishing gating is to place the gate after the EM module (LCA), so it controls 
the flow of activation from the EM module back into the LSTM. Appendix 4—figure 1 illustrates 
the differences between these configurations; for convenience, we will use ‘post-gating’ to refer to 
the latter mechanism and ‘pre-gating’ to refer to the mechanism used in the simulations described 
in the main text. As noted in the Discussion, the primary consequence of having the gate on the 
output side is that the gate can be controlled based on information coming out of the hippocampus, 
in addition to all of the neocortical regions that are used to control the gate in our pre-gating model. 
The post-gating mechanism has been more widely used in machine learning (Ritter et al., 2018; 
Ritter, 2019; Pritzel et al., 2017) because it is more powerful – since the gating function has access 
to activated episodic memories in the LCA, the model can close/open the gate depending on the 
properties of these activated memories.

Appendix 4—figure 1. Unrolled network diagrams for the pre-gating (A) versus the post-gating (B) models. The 
EM gate in the pre-gating model controls the degree to which stored memories are activated within the LCA 
module, but does not control the degree to which the activated memories are transmitted to the neocortex. 
By contrast, the EM gate in the post-gating model controls the degree to which activated memories in the LCA 
module are transmitted to the neocortex, but it does not control how these memory activations are computed in 
the first place.

Since it is still unclear what kinds of episodic memory gating are implemented in the brain (see below 
for further discussion), we experimented with both mechanisms. We focused on the pre-gating 
model in the main text since it involves fewer assumptions – critically, it does not assume that the 
gating mechanism has access to the content of memories that are activated within the hippocampus. 
That said, the key results for the pre-gating model, reported in the main text, qualitatively hold for 
the post-gating model (Appendix 4—figure 2). In particular, the post-gating model also (1) retrieves 
much more from episodic memory in the DM condition, compared to the other two conditions 
(Appendix 4—figure 2A, B and C); (2) retrieves more when it is uncertain about the upcoming 
state (Appendix 4—figure 2D); (3) delays its recall time when the penalty is higher (Appendix 4—
figure 2E); (4) adjusts its EM gate value as a function of the schema strength in a way that is similar 
to the pre-gating model (Appendix 4—figure 2F); and( 5) shows the effect that midway-encoded 
memories hurt next-state prediction performance (Appendix 4—figure 2G and H – note that this 
also holds true when midway-encoded memories are present during meta-training). Importantly, 
while the aforementioned patterns replicate across the models, the results are not exactly the same 
– the retrieval policy for the post-gating model is often more flexible (i.e., it can adapt better to 
current conditions), since its EM gate can be controlled by the output of the EM module (in addition 
to the output of other neocortical regions). For example, in the post-gating model, the EM gate 
layer of the neocortical network is able to detect that relevant memories are not present in the NM 
condition, and it adapts to this by setting the EM gate to a lower value in the NM condition than the 
DM condition (Appendix 4—figure 2C) – that is, it learns to suppress retrieval when no memories 
are coming to mind. By contrast, the pre-gating model actually shows the opposite pattern – here, 
the EM gate layer can not detect the absence of relevant memories in the NM condition, but it can 
detect higher overall levels of uncertainty in the NM condition than the DM condition, which leads 

https://doi.org/10.7554/eLife.74445
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it to set the EM gate to a slightly higher value in the NM condition than the DM condition (see 
Figure 3C in the main text).

Appendix 4—figure 2. The post-gating model qualitatively replicates key results obtained from the pre-gating 
model (compare to Figures 3 and 4 in the main text). See text in this appendix for discussion. The errorbars 
indicate 1SE across 15 models.

One exciting future direction is to experimentally investigate how episodic memory gating works in 
the brain. The pre-gating and post-gating models make different predictions about the hippocampal 
activity: The post-gating model predicts that candidate episodic memory traces should be activated 
in the hippocampus at each time point; sometimes these activated traces are blocked (by the gate) 
from being transmitted to neocortex, and sometimes they are allowed through. The pre-gating 
model predicts that activation of episodic memory traces in the hippocampus will distributed 
more sparsely in time; on time points when the gate is closed, no activation should be transmitted 
from neocortex to hippocampus, resulting in reduced activation of hippocampal memory traces 
(although there might be activation of these traces via recurrence within the hippocampus). Putting 
these points together, the pre-gating model appears to predict a large difference in hippocampal 
activation patterns as a function of whether the gate is closed or open; by contrast, the post-gating 
model appears to predict a smaller difference in hippocampal activation patterns as a function of 
whether the gate is closed or open.
However, this logic is complicated by the fact that the hippocampus is connected in a recurrent 
‘big loop’ with neocortex (Schapiro et al., 2017; Kumaran and Maguire, 2007; van Strien et al., 
2009; Koster et al., 2018) – in the post-gating model, even if the inputs to the hippocampus are 
the same when the gate is open vs. closed, the outputs to neocortex will be different, which in turn 
will affect the inputs (from neocortex) that hippocampus receives on the next time point. Thus, 
we would eventually expect differences in hippocampal activation in these conditions, even in the 
post-gate model. This suggests that, while it may be challenging to empirically tease apart the pre-
gating and post-gating models, time-resolved methods like ECoG that can (in principle) distinguish 
between the ‘initial wave’ of activity hitting the hippocampus after a stimulus and subsequent 
(recurrent) waves of activity would be most useful for this purpose. We should also note that the 

https://doi.org/10.7554/eLife.74445
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pre-gating and post-gating mechanisms are not mutually exclusive and it is possible that the brain 
deploys both of them.

https://doi.org/10.7554/eLife.74445
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Appendix 5
Training the model without reinforcement learning
In the simulations shown in the main text, we trained the model using reinforcement learning (after 
supervised pre-training) and gave the model the option of responding ‘don’t know’, in which case 
it received no penalty or reward (see Model training and testing section above for details). Here, in 
Appendix 5—figure 1, we report the results from a model variant in which the model was trained in 
an entirely supervised fashion, without the option of responding ‘don’t know’ – on each time point, 
the model was forced to predict the next state, and weights were adjusted based on the discrepancy 
between the predicted and actual states.

Appendix 5—figure 1. Results from a ‘no-RL‘ model that was trained in an entirely supervised fashion, without 
reinforcement learning and without the option of giving a ‘don’t know‘ response – compare to Figure 3 in the 
main text; see text in this appendix for discussion. The errorbars indicate 1SE across 15 models.

There are two important observations to make based on the results in Appendix 5—figure 1. The 
first observation is that the model is much less patient (i.e., it retrieves much earlier in part 2) when we 
take away the option of giving a ‘don’t know’ response. This impatience can be seen by comparing 
the early time points of Appendix 5—figure 1C to the early time points of Figure 3C in the main 
text – EM gate values are much higher at early time points in the no-RL model. It can also be seen 
by comparing Appendix 5—figure 1E to Figure 3E in the main text – the average time-to-recall is 
much lower in the no-RL model. These findings confirm our claim (made in the main text) that the 
‘don’t know’ response makes the strategy of waiting to retrieve more viable, by allowing the model 
to escape being penalized on trials when it is waiting to retrieve from episodic memory.
The second observation is that, even without the option of responding ‘don’t know’, the learned 
retrieval policy of the no-RL model is still sensitive to certainty. This is shown in Appendix 5—figure 
1B and C: Just like the model in the main text, the no-RL model recalls less information in the RM 
condition (when it is more certain about what will happen next) vs. the DM condition. The lack of 
a difference in EM gate value between ‘recently observed’ and ‘not recently observed’ features in 
Appendix 5—figure 1D suggests that the no-RL model might not be sensitive to certainty, but this 
is an artifact of the no-RL model’s impatience – the EM gate value is very high for early time points in 
both conditions, making it harder to observe a difference between conditions; in other simulations 
(not shown here) where we used a stronger penalty manipulation to disincentivize early retrieval, 
the difference in recall levels between ‘recently observed’ and ‘not recently observed’ features was 
clearly visible in the no-RL model, reaffirming its sensitivity to certainty.
Taken together, the results from the no-RL model are very useful in clarifying what, exactly, is gained 
from the use of RL training with a ‘don’t know’ option. In particular: having a ‘don’t know’ response 
does not cause the model to have qualitatively distinct neural states as a function of certainty – these 
differences (described in Appendix 1 above) exist regardless of ‘don’t know’ training, and can be 
used by the no-RL model to modulate its retrieval policy. Rather, the effect of RL training with the 
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‘don’t know’ response is to make the model more patient, by giving it the option of waiting without 
penalty when it is uncertain.

https://doi.org/10.7554/eLife.74445
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Appendix 6
Simulating inter-subject correlation results from Chen et al., 2016
As discussed in the main text, Chen et  al., 2016 found strong hippocampal-neocortical activity 
coupling measured using inter-subject functional connectivity (ISFC; Simony et  al., 2016) for 
DM participants, while the level of coupling was much weaker for participants in the RM and NM 
conditions (Chen et al., 2016). Here, we address some additional findings from this study that used 
temporal inter-subject correlation (ISC) as a dependent measure; temporal ISC tracks the degree 
to which the fMRI time series in a particular brain region is correlated across participants (Hasson 
et al., 2004; Chen et al., 2016; Nastase et al., 2019). Specifically, Chen et al., 2016 found that 
– at the start of part 2 – temporal ISC in DMN regions was lower between participants in the DM 
and RM conditions than between RM participants, suggesting differences in how DM and RM 
participants were interpreting the story; however, this gap in ISC decreased over the course of part 
2, suggesting that these differences in interpretation between DM and RM participants decrease 
over time (Appendix 6—figure 1B). Furthermore, across participants, the degree to which the gap 
in ISC narrowed during the second half of part 2 was correlated with the amount of hippocampal-
neocortical activity coupling at the start of part 2 (Appendix 6—figure 1C; Chen et  al., 2016). 
Taken together, these findings can be interpreted as showing that hippocampus is consulted more 
(as evidenced by increased hippocampal-neocortical coupling) in the DM condition (where there are 
gaps in the situation model at the start of part 2) than the RM condition (where the situation model 
is more complete); the effect of this increased consultation of the hippocampus is to ‘fill in the gaps’ 
and align the interpretations of the DM and RM participants (as evidenced by DM-RM ISC rising to 
the level of RM-RM ISC).

Appendix 6—figure 1. Simulating inter-subject correlation results from Chen et al., 2016. (A) Illustration of how 
we computed inter-subject correlation (ISC) in the model (see text for details). (B and C) show the empirical results 
from Chen et al., 2016 (reprinted with permission) and (D and E) show model results. (B) The sliding-window 
temporal inter-subject correlation (ISC) over time, during part 2 of the movie. The recent memory ISC, or RM-RM 
ISC, was computed as the average ISC value between two non-overlapping subgroups of the RM participants. The 
distant memory ISC, or RM-DM ISC, was computed as the average ISC between one sub-group of RM participants 
Appendix 6—figure 1 continued on next page
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and the DM participants. Initially, the RM-DM ISC was lower than RM-RM ISC, but as the movie unfolded, RM-DM 
ISC rose to the level of RM-RM ISC. (C) For the DM participants, the level of hippocampal-neocortical inter-subject 
functional connectivity at the beginning of part 2 of the movie (minutes 1–4) was correlated with the level of 
RM-DM ISC later on (minutes 5–10). (D) Sliding window temporal ISC in part 2 between the RM models (RM-RM) 
compared to ISC between the RM and DM models (RM-DM). The convergence between RM-DM ISC and RM-RM 
ISC shows that activity dynamics in the DM and the RM models become more similar over time (compare to part 
B of this figure). The errorbars indicate 1SE across 15 models. (E) The correlation in the model between memory 
activation at time ‍t‍ and the change in ISC from time ‍t‍ to time ‍t + 1‍, for the first 10 time points in part 2. Each point 
is a subject-subject pair across the two conditions. The 95% bootstrap distribution on the side shows that the 
correlation between memory activation and the change in RM-DM ISC is significantly larger than the correlation 
between memory activation and the change in RM-RM ISC (see text for details).

© 2016, Oxford University Press Permissions. panel B is reprinted from Figure 6 Chen et al., 2016 by permission 
of Oxford University Press. It is not covered by the CC-BY 4.0 licence and further reproduction of this panel would 
need permission from the copyright holder

© 2016, Oxford University Press Permissions. panel C is reprinted from Figure S7 Chen et al., 2016, by 
permission of Oxford University Press. It is not covered by the CC-BY 4.0 licence and further reproduction of this 
panel would need permission from the copyright holder

To simulate these results, we trained 30 neural networks, then we assigned half of them to the RM 
condition and half to the DM condition. Next, we performed the temporal ISC analysis used in Chen 
et al., 2016 by treating hidden-unit activity patterns as multi-voxel brain patterns. An important 
technical note is that running ISC across networks requires some form of alignment (i.e., so the time 
series for corresponding parts of the networks can be correlated). Human fMRI data are approximately 
aligned across subjects, since brain anatomy is highly similar across people. However, when many 
instances of the same neural network architecture are trained on the same data, they tend to acquire 
different neural representations, even though they represent highly similar mathematical functions 
(Li et  al., 2015; Dauphin et  al., 2014; Meng et  al., 2018). That is, the same input can evoke 
uncorrelated neural responses across different networks, although they produce similar outputs. 
For our purpose, this means that directly correlating hidden-layer activity patterns across neural 
networks will underestimate the similarity of representations across networks. Therefore, to simulate 
effects involving (human) inter-subject analyses, we need a way to align neural networks.
To accomplish this goal, we used the shared response model (SRM) (Lu et al., 2018) – a functional 
alignment procedure commonly used for multi-subject neuroimaging data (Chen et  al., 2015b; 
Haxby et al., 2011; Haxby et al., 2020). Intuitively, this method applies rigid body transformation 
to align different network activities into a common space. We have previously shown that neural 
networks with highly overlapping training experience can be aligned well with SRM (Lu et al., 2018). 
Here, we used the Brain Imaging Analysis Kit (BrainIAK) implementation of SRM (Kumar et  al., 
2020b; Kumar et al., 2020a) to align our trained networks before computing ISC (Appendix 6—
figure 1A).
Our simulation results qualitatively capture the findings from Chen et  al., 2016. During part 2, 
DM-RM ISC starts lower than RM-RM ISC, but as the event unfolds, they gradually converge 
(Appendix 6—figure 1D). Moreover, in the DM condition, the level of memory activation at time ‍t‍ 
is correlated with the increment in DM-RM ISC from time ‍t‍ to time ‍t + 1‍ (Appendix 6—figure 1E). 
As a comparison point, in the RM condition (where the model is not relying on episodic retrieval to 
fill in gaps in the situation model), memory activation does not correlate with the change in (RM-RM) 
ISC. Collectively, these results establish that episodic retrieval accelerates the convergence between 
model activations in the DM and RM conditions.
More generally, this result shows that one can capture inter-subject results with computational 
models. Experiments using inter-subject analyses and natural stimuli are becoming increasingly 
popular (Nastase et al., 2019; Sonkusare et al., 2019; Hamilton and Huth, 2018; Nastase et al., 
2020); our simulation results provide a proof-of-concept demonstration of how computational 
models of memory can engage with this literature.

Appendix 6—figure 1 continued
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Appendix 7
Model parameters
We implemented the model in PyTorch (Paszke et al., 2017; Paszke et al., 2019). The numbers of 
hidden units for the LSTM layer and the decision layer were 194 and 128, respectively. The level of 
competition in the LCA module was 0.8. The initial cell state of the LSTM was a random vector ∼ 
isotropic Gaussian(0,.1).
During the meta-training phase, we used the Adam optimizer (Kingma and Ba, 2014). The initial 
learning rate was 7e-4. The learning rate decayed by 1/2 if the average prediction accuracy minus 
mistakes stayed within 0.1% from the previous best loss for 30 consecutive epochs. The minimal 
learning rate was 1e-8. We used orthogonal weight initialization with gain of 1 (Saxe et al., 2014), and 
we used supervised initialization for 600 epochs to help the model develop useful representations 
(Misra et al., 2017; Nagabandi et al., 2018). During the supervised initialization phase, the model 
was trained to predict the upcoming state; episodic memory and the ‘don’t know’ unit were turned-
off during this phase. After the supervised initialization phase, the model was trained with A2C 
(Mnih et al., 2016) for another 400 epochs. We used entropy regularization with weight of 0.1 to 
encourage exploration. For every epoch, the model was trained on 256 events.

https://doi.org/10.7554/eLife.74445
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