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Significance

This study reveals a stimulus-
driven gradient of lags in 
functional connectivity on the 
scales of several seconds during 
the comprehension of spoken 
narratives. This narrative-driven 
information flow proceeds along 
the cortical processing hierarchy 
from the early auditory cortex to 
the language network, then to 
the default mode network. The 
hierarchy of processing 
timescales is thought to be a 
fundamental organizing principle 
of the brain. Here, we provide a 
simple computational model to 
systematically explore the 
interplay between the brain’s 
functional architecture and the 
temporal structure of natural 
language inputs. We show that 
the information flow emerges 
from hierarchical neural 
accumulation driven by inputs 
with structures similar to 
naturalistic narratives—that is, 
hierarchically nested structures, 
which are ubiquitous in real-
world contexts.
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When listening to spoken narratives, we must integrate information over multiple, 
concurrent timescales, building up from words to sentences to paragraphs to a coherent 
narrative. Recent evidence suggests that the brain relies on a chain of hierarchically 
organized areas with increasing temporal receptive windows to process naturalistic nar-
ratives. We hypothesized that the structure of this cortical processing hierarchy should 
result in an observable sequence of response lags between networks comprising the 
hierarchy during narrative comprehension. This study uses functional MRI to estimate 
the response lags between functional networks during narrative comprehension. We 
use intersubject cross-correlation analysis to capture network connectivity driven by 
the shared stimulus. We found a fixed temporal sequence of response lags—on the 
scale of several seconds—starting in early auditory areas, followed by language areas, 
the attention network, and lastly the default mode network. This gradient is consistent 
across eight distinct stories but absent in data acquired during rest or using a scrambled 
story stimulus, supporting our hypothesis that narrative construction gives rise to inter-
network lags. Finally, we build a simple computational model for the neural dynamics 
underlying the construction of nested narrative features. Our simulations illustrate how 
the gradual accumulation of information within the boundaries of nested linguistic 
events, accompanied by increased activity at each level of the processing hierarchy, can 
give rise to the observed lag gradient.

cortical hierarchy | naturalistic stimuli | fMRI | functional connectivity | language processing

Narratives are composed of nested elements that must be continuously integrated to 
construct a meaningful whole, building up from words to phrases to sentences to a coher-
ent narrative (1). Recent evidence suggests that the human brain relies on a chain of 
hierarchically organized brain areas with increasing temporal receptive windows (TRWs) 
to process this temporally evolving, nested structure (Fig. 1A). This cortical hierarchy was 
first revealed by studies manipulating the temporal coherence of naturalistic narratives (2, 3). 
These studies reported a topography of processing timescales where early auditory (AUD) 
areas respond reliably to rapidly evolving acoustic features, adjacent areas along the superior 
temporal gyrus respond reliably to information at the word level, and nearby language 
areas respond reliably only to coherent sentences. Finally, areas at the top of the processing 
hierarchy in the default mode network (DMN) integrate slower evolving semantic infor-
mation over many minutes (4).

This cortical hierarchy of increasing temporal integration windows is thought to be a 
fundamental organizing principle of the brain (5, 6). The cortical hierarchy of TRWs in 
humans has been described using fMRI (2, 3, 7, 8) and ECoG (9). Recent work has shown 
that deep language models also learn a gradient or hierarchy of increasing TRWs (10–12), 
and that manipulating the temporal coherence of narrative input to a deep language model 
yields representations closely matching the cortical hierarchy of TRWs in the human brain 
(13). Furthermore, the cortical hierarchy of TRWs matches the intrinsic processing times-
cales observed during rest in humans (9, 14, 15) and monkeys (16). This cortical topography 
also coincides with anatomical and functional gradients such as long-range connectivity 
and local circuitry (17–19), which have been shown to yield varying TRWs (20, 21).

The proposal that the cortex is organized according to a hierarchy of increasing TRWs 
implies that each area “chunks” and integrates information at its preferred temporal win-
dow and that narrative construction proceeds along the cortical hierarchy. For example, 
an area that processes phrases receives information from areas that process words (Fig. 1B), 
which are further transmitted to areas that integrate phrases into sentences. At the end of 
each phrase, information is rapidly cleared to allow for real-time processing of the next 
phrase (1, 7). The chunking of information at varying granularity is supported by recent 
studies that used data-driven methods to detect boundaries as shifts between stable patterns 
of brain activity (22, 23).D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 P

ri
nc

et
on

 U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
D

ec
em

be
r 

19
, 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

75
.9

1.
89

.2
47

.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:claire.hc.chang@gmail.com
mailto:sam.nastase@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209307119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209307119/-/DCSupplemental
https://orcid.org/0000-0002-3773-1777
https://orcid.org/0000-0001-7013-5275
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2209307119&domain=pdf&date_stamp=2022-12-8


2 of 10   https://doi.org/10.1073/pnas.2209307119� pnas.org

This model of narrative construction (Fig. 1C) predicts a gra-
dient of response lags across the cortical processing hierarchy; 
namely, shorter temporal lags among adjacent areas along the 
processing hierarchy than regions further apart in the cortical 
hierarchy. We provide a computational model to clearly illustrate 
how the construction of nested narrative features could give rise 
to the predicted lag gradient. In the current study, we test this 
prediction by comparing response fluctuations elicited by spoken 
narratives in different brain areas using lag-correlation. We extract 
the lag with the peak correlation to estimate interregion temporal 
differences. To focus on neural responses to linguistic and narrative 
information, we used intersubject functional connectivity (ISFC) 
analysis (24, 25). Unlike traditional within-subject functional 
connectivity (WSFC), ISFC effectively filters out the idiosyncratic 
fluctuations that drive intrinsic functional correlations within 
subjects. Isolating stimulus-locked neural activity from intrinsic 
neural activity allows us to observe the temporal dynamics of 
narrative construction across the cortical hierarchy. We predicted 
that ISFC analysis would reveal an interregion lag gradient during 
the comprehension of intact narrative, but not during scrambled 
story or rest, which does not involve narrative construction. 
Finally, our computational model shows how the lag gradient 
deteriorates with nonnaturalistic inputs.

Results

To test the hypothesis that narrative construction will yield a gra-
dient of response lags across brain regions, we first divided the 
neural signals into six networks by applying k-means clustering to 
WSFC measured during rest (SI Appendix, Fig. S1). We labeled 
these networks based on anatomical correspondence with previ-
ously defined functional regions following Simony and colleagues 
(25), including the AUD, ventral language (vLAN), dorsal language 
(dLAN), DMN, and attention (ATT) networks, aligning with the 
previously documented TRW hierarchy (SI Appendix, Fig. S2).

We computed lag-ISFC (i.e. cross-correlation) at varying tem-
poral lags between all pairs of networks (Fig. 2A and SI Appendix, 
Fig. S3). The lags with maximum ISFC (i.e., “peak lag”) for each 

seed-target pair were extracted as an index for the temporal gaps 
in the stimulus-driven processing between each pair of networks. 
The extracted peak lags were color-coded to construct the network × 
network peak lag matrix (Fig. 2 B and C). In the following, we 
describe the observed lag gradient in detail and several control 
analyses. Finally, we simulated the nested narrative structure and 
the corresponding brain responses to explore how different inte-
gration functions at different timescales could give rise to the 
observed lag gradient.

Fixed Lag Gradient across Cortical Networks. The average lag-
ISFC across stories was computed for each seed network (Fig. 3 A, 
Left). The lag-ISFC between a seed network and the same network 
in other subjects always peaked at lag 0, reflecting the strong 
stimulus-locked within-network synchronization reported in the 
intersubject correlation (ISC) literature (3, 26, 27) (SI Appendix, 
Fig. S3). Interestingly, however, non-zero peak lags were found 
between different networks. Relative to a low-level seed, putatively 
higher level networks showed peak connectivity at increasing 
lags. For example, the stimulus-induced activity in dLAN lagged 
1 TR (1.5 s) behind activity in AUD, whereas the activity in 
DMNb lagged 4 TRs (6 s) behind activity in dLAN. Importantly, 
regardless of the choice of seed, the target networks showed peak 
connectivity in a fixed order progressing through AUD, vLAN, 
dLAN, DMNa, ATT, and DMNb.

To summarize the findings, we color-coded the peak lags and 
collated them into a peak lag matrix where each row corresponds 
to a seed network and each column corresponds to a target net-
work (Fig. 3 A, Right and see SI Appendix, Fig. S4 for the lag-ISFC 
waveforms). The white diagonal indicates a peak at zero lag within 
each area, reflecting the intranetwork synchronization across sub-
jects (i.e., ISC) (SI Appendix, Fig. S3), while the cool-to-warm 
color gradient indicates a fixed order of peak lags. For example, 
the first row shows a white-to-warm gradient, reflecting that when 
AUD served as the seed, other networks were either synchronized 
with or followed AUD, but never preceded it. Conversely, the 
cool-to-white gradient of the last row indicates that all other net-
works preceded the DMNb seed. The lag gradient can also be 

Fig. 1. Narrative construction in the hierarchical processing framework. (A) The proposed cortical hierarchy of increasing TRWs (adapted from ref. 5). (B) Each level 
of the processing hierarchy continuously accumulates information over inputs from the preceding level. For example, phrases built over words are constructed 
into sentences. The accumulated information is flushed out at structural boundaries. (C) Each level of the processing hierarchy provides the building blocks for 
the next level, which naturally leads to longer TRWs, corresponding to linguistic units of increasing sizes. This model of narrative construction along the cortical 
processing hierarchy implies a gradient of response lags across the cortical hierarchy.
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observed in individual stories (SI Appendix, Fig. S5), although 
these patterns are noisier than the averaged results. The lag gradi-
ent proceeded in a fixed order across all networks, suggesting that 
bottom-up narrative construction is reflected in lagged connec-
tivity between stages along the cortical hierarchy from AUD up 
to DMNb. Similar results were obtained when we defined the 
networks using the TRW hierarchy (SI Appendix, Fig. S2) or used 
network masks predefined based on whole-brain functional par-
cellation of resting-state fMRI data (28) (SI Appendix, Fig. S6).

Temporal Scrambling Abolishes the Lag Gradient. We 
hypothesized that the lag gradient reflects the emergence of 
macroscopic story features (e.g., narrative situations or events) 

integrated over longer periods of time in higher level cortical 
networks (22, 23). To support this point, we next used the same 
procedure to compute the peak lag matrix for a temporally 
scrambled version of one story (“Pie Man”; as for the results of 
intact “Pie Man”, please see SI Appendix, Fig. S5). In this dataset, 
the story stimulus was spliced at the word level and scrambled, 
thus maintaining similar low-level sensory statistics while 
abolishing the slower evolving narrative content. The peak lag 
matrix for the scrambled story revealed synchronized responses at 
lag 0 both within and between the AUD and vLAN networks, but 
no significant peaks within or between other networks (Fig. 3B). 
This reflects low-level speech processing limited to the word level 
and indicates that disrupting the narrative structure of a story 

Fig. 2. Construction of the internetwork peak lag matrix. (A) Lag-ISFC (cross-correlation) between seed-target network pairs were computed using the leave-
one-subject-out method. The dLAN network is used as an example seed network for illustrative purposes. (B) The matrix depicts ISFC between the dLAN seed 
and all six target networks at varying lags. The lag with the peak correlation value (colored vertical bars) was extracted and color-coded according to lag. For 
visualization, the lag-ISFCs were z-scored across lags. (C) The network × network peak lag matrix (P < 0.05, FDR corrected). Warm colors represent peak lags 
following the seed network, while cool colors represent peak lags preceding the seed network; zeros along the diagonal capture the intranetwork ISC. An example 
story (“Sherlock”) is shown for illustrative purposes.

Fig. 3. The peak lag matrix across eight stories reveals a fixed lag gradient across networks, which is abolished during scrambled narratives and rest. (A) The 
network × network peak lag matrix is based on the averaged lag-ISFC across eight stories. For visualization, lag-ISFC curves at left were z-scored across lags. (B) 
Peak lag matrix based on responses to a scrambled story stimulus (scrambled words). Peak lag matrices are thresholded at P < 0.05 (FDR corrected).D
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abolishes the temporal propagation of information to higher 
level cortical areas.

Lag Gradient across Fine-Grained Subnetworks. To verify that 
the peak lag gradient could also be observed at a finer spatial scale, 
we further divided each of the six networks into ten subnetworks, 
again by applying k-means clustering to resting-state WSFC 
(k = 10 within each network). The peak lag matrix between the 
sixty subnetworks was generated using the same methods as in 
the network analysis (SI Appendix, Fig. S7A). We also visualized 
the brain map of lags between one selected seed (posterior 
superior/middle temporal gyrus) and all the target subnetworks 
(SI Appendix, Fig. S7B). Similar to the network level analysis, 
the peak lag between the subnetworks revealed a gradient from 
the early AUD cortex to the language network (AUD association 
cortex), then to the DMN.

Idiosyncratic Within-Subject Fluctuations Obscure the Lag 
Gradient. We next asked whether the internetwork lag gradient 
could result from intrinsic fluctuations in brain activity previously 
observed with WSFC (Mitra et al., 2014, 2015, 2016). WSFC 
did not show a difference between intact stories and other 
conditions. At the network level, WSFC analyses revealed a strong 
peak correlation at lag zero within each network but also a peak 
correlation at lag zero across all networks such that no gradient 
was observed in either the intact story, the scrambled story, or 
the resting-state data (SI Appendix, Fig. S8A). At the fine-grained 
subnetwork level, subtle lags on the scale of −1 to +1 TR (1 TR 
= 1.5 s) were found in all three conditions without resorting to 
interpolation (SI  Appendix, Fig.  S8B), replicating the work by 
Mitra et al. (2014, 2015; 2016) (29–31) showing interarea lags 
around −1 to +1 s in resting-state data with WSFC.

The discrepancy may be related to differences in the signals that 
drive WSFC and ISFC. ISFC isolates stimulus-driven connectiv-
ity; in contrast, WSFC is susceptible to idiosyncratic intrinsic 
signal fluctuations, which propagate across brain areas irrespective 
of task-related activation (24, 25). Thus, the present result suggests 
that idiosyncratic, intrinsic fluctuations do not drive the lag gra-
dient observed during narrative comprehension. Furthermore, 
natural language processing unfolds over timescales slower than 
the propagation of intrinsic signals revealed by WSFC (29–31). 
Natural language is processed word by word across sentences and 
paragraphs, which can unfold over seconds to minutes. Indeed, 
our ISFC analysis reveals a narrative-driven lag gradient at tem-
poral scales an order of magnitude larger than the intrinsic lags 
(up to 9 s) (Fig. 3). The narrative-driven lag gradient we report 
here cannot be explained by factors such as differences in the 
hemodynamic response, which would be observable using WSFC 
analyses.

Dominant Bottom-Up Lag Gradient across Networks. We 
adopted a method introduced by Mitra and colleagues (31) to 
discern whether there are multiple parallel lag sequences between 
networks. We applied principal component analysis (PCA) to the 
peak lag matrix and examined the cumulative variance accounted 
for across principal components. Our results revealed that the first 
principle component explains 88.8% of the variance (SI Appendix, 
Fig. S9 A and B) in the lag matrix at the coarse level of the cortical 
networks (Fig. 3A) and 43.0% of the variance in the lag matrix at 
the fine-grained subnetwork level (SI Appendix, Fig. S7A). These 
results suggest that there is a single, unidirectional lag gradient 
across networks.

We visualized the relative lag values from the first principal 
component of the intersubnetwork lag matrix on a brain map 

(SI Appendix, Fig. S9C), revealing shorter temporal lags among 
adjacent areas along the processing hierarchy than regions further 
apart in the cortical hierarchy.

The Lag Gradient is not Driven by Transient Linguistic Boundary 
Effects. Prior work has reported that scene/situation boundaries in 
naturalistic stimuli elicit transient brain responses that vary across 
regions (32–37). To test whether this transient effect could drive 
the gradient observed in our lag matrix, we computed lag-ISFC 
after regressing out the effects of word, sentence, and paragraph 
boundaries in two stories with time-stamped annotations. As 
shown in SI Appendix, Fig. S10, the regression model successfully 
removed transient effects of the boundaries from the fMRI time 
series. Critically, however, the lag gradient remained qualitatively 
similar when accounting for boundaries, indicating that the 
observed lag gradient does not result from transient responses to 
linguistic boundaries in the story stimulus.

Reproducing the Lag Gradient by Simulating Narrative 
Construction. Narratives have a multilevel nested hierarchical 
structure (38) and are reported to elicit neural processing at 
increasingly long timescales along the cortical hierarchy (22, 23). 
To better understand how the construction of nested narrative 
features could give rise to the long internetwork lag gradient we 
observed, with up to 9-s lags, we created a simulation capturing the 
hierarchically nested temporal structure of real-world narratives 
and the corresponding hierarchy of cortical responses.

To match the six networks discussed so far, we simulated story 
features emerging across six distinct timescales, which roughly 
correspond to words, phrases, sentences, 2 to 3 sentences, and 
paragraphs (Fig. 4A). To build the first level of a nested structure, 
we sampled a sequence of 3,000-word durations with replacement 
from “Sherlock.” Unit boundaries at Level 1 were inserted accord-
ingly. First-level units were integrated into units of the next level 
with a lognormal distributed unit length (SI Appendix, Fig. S11). 
For example, if the first Level 2 unit has a unit length of 4, we 
insert a Level 2 boundary at the time point corresponding to the 
end of the fourth Level 1 unit, creating a “phrase” of 4 “words.” 
Second-level units were integrated into the third-level units fol-
lowing the same method. A nested structure of six levels was thus 
generated. Since paragraphs are often separated in real stories by 
longer silent periods (SI Appendix, Fig. S12), we inserted pauses 
at top-level (sixth-level) boundaries. The bottom-up construction 
of narrative structure gives rise to interlevel alignment and increas-
ing processing timescales at higher levels, as proposed in the 
hierarchical processing framework (5, 6, 18).

The simulated response amplitudes were generated using a 
linearly increasing temporal integration function (Fig. 4B), based 
on prior work showing that information accumulation is accom-
panied by gradually increasing activation within phrases/sentences 
(39–44) and paragraphs (32, 35) (a similar sentence/paragraph 
length effect was also observed in our data; see SI Appendix, 
Fig. S13). The linearly increasing temporal integration function 
accumulates activity derived from lower level units within the inter-
val between unit boundaries at the current levels and flushes out 
the accumulated activity at unit boundaries of the current level. To 
account for hemodynamic lag in the fMRI signal, we applied a 
canonical hemodynamic response function (HRF) to the simulated 
response amplitudes (Fig. 4C). We averaged the interlevel lag-cor-
relations across thirty different simulated structures (equivalent to 
30 different stories) and extracted the peak lags. This peak-lag anal-
ysis parallels the analysis previously applied to the fMRI data.

The simulation allows us to systematically manipulate the nar-
rative structure and the temporal integration function to reveal D
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the conditions under which the lag gradient emerges. We first 
performed the simulation with a set of “natural” parameters 
roughly motivated by the temporal properties of our narrative 
stimuli and a simple temporal integration function reflecting linear 
temporal accumulation (SI Appendix, Table S1).

This simple simulation is sufficient to reproduce the  
internetwork lag gradient observed in the fMRI data (Fig. 5A; as 
well as the ISFC at lag zero; SI Appendix, Fig. S14). In addition, 
we also compared the spectral properties of the simulated and real 
BOLD signals (SI Appendix, Fig. S15). Computing the PSD of 
the simulated brain responses revealed increased low-frequency 
power in responses to high-level structures with longer intervals 
between boundaries. Similarly, stronger low-frequency fluctua-
tions in real BOLD signals were found in high-level regions along 
the cortical processing hierarchy. We computed the power spec-
trum voxel by voxel and split the voxels into six clusters of equal 
size according to their low-frequency power (cumulative power 
below 0.04 Hz) (SI Appendix, Fig. S15B), replicating Stephens et 
al. (2013) (15). Networks defined by low-frequency power show 
a similar topographic gradient as the networks defined by rest-
ing-state WSFC, from the AUD areas to DMN, which yields a 
significant correlation between the two sets of network indices. 
We then adjusted one parameter at a time to explore the parameter 
space constrained by natural speech.

Key Parameters for the Emergence of a Lag Gradient. Within 
the bounds of natural speech (SI Appendix, Fig. S16), we observed 
that the simulated internetwork lag gradient is robust to varying 
lengths of linguistic/narrative units (mean: 2 to 4; variance: 0.1 to 

1; longer length generated longer units, often with the top layers 
exceeding the length of the simulated story, i.e., 3,000 words). The 
duration of interparagraph pauses was estimated from two stories 
(“Sherlock” and “Merlin”; SI Appendix, Fig. S12) (mean length: 1.5 
to 4.5 s; pause effect size: 0.01 to 1 SD of simulated activity). We 
also found that the model, similar to neural responses as observed 
by Lerner and colleagues (45), was robust to variations in speech 
rate (0.5 to 1.5, relative to “Sherlock” speech rate). However, the 
lag gradient deteriorates with parameters outside of the bounds of 
natural speech, for example, when the interparagraph pause is set 
to 0 s. We also simulated brain responses to word-scrambled stories 
by setting mean unit length = 1 and unit length variance = 0. With 
this setting, word-level units are never integrated into larger units 
(the units at each level correspond to individual words from the 
first level). No information integration is involved, resulting in flat 
activations and eliminating the difference in spectral properties 
of time series from different levels. No lag gradient is observed in 
this case (Fig. 5B).

Next, we computed interlevel lag-correlation using simulated 
responses to different nested structures (similar to responses to 
different stories), which preserves the spectral properties of indi-
vidual time series while disrupting their nesting relationship. No 
significant lag-correlation was found when violating the nested 
structure of naturalistic narratives (Fig. 5C). In addition to the 
aforementioned linearly increasing integration function, we also 
explored several other temporal integration functions. We found 
that linearly and logarithmically increasing functions both yielded 
the internetwork lag gradient, but not the symmetric triangular 
or boxcar functions. The linearly decreasing function resulted in 

Fig. 4. Simulating narrative construction and the corresponding brain responses. (A) The construction of the nested narrative structure, simulated by sampling 
boundary intervals from actual word durations and recursively integrating them to obtain structural boundaries at higher levels. (B) Information accumulation at 
different levels is generated by a linearly increasing temporal integration function. We postulated that information accumulation is accompanied by increased 
activity. (C) BOLD responses generated by HRF convolution. This visualization is based on parameters estimated from a spoken story stimulus (SI Appendix, Table S1).
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a reversed lag gradient (Fig. 6). These results suggest that the hier-
archically nested structure that naturally arises from bottom-up 
narrative construction and a monotonically increasing integration 
function are key to the emergence of the lag gradient.

Discussion

This study reveals how information is propagated along the cortical 
processing timescale hierarchy across time (lags) (5). By applying 
lag-ISFC to a collection of fMRI datasets acquired while subjects 
listened to spoken stories, we revealed a temporal progression of 
story-driven brain activity along a cortical hierarchy for narrative 
comprehension (Fig. 3A). The temporal cascade of cortical 
responses summarized by the internetwork lag gradient was con-
sistent across stories. Qualitatively similar cortical topographies 
for the lag gradient were observed using networks defined by the 
k-means method at both coarse- (Fig. 3A) and fine-grained 
(SI Appendix, Fig. S7) spatial scales (25, 46), networks defined by 
TRW index (SI Appendix, Fig. S2), and a predefined functional 
parcellation (28) (SI Appendix, Fig. S6), suggesting that the lag 
gradient is robust to different network definitions. The results are 
in line with the hierarchical processing framework, which proposes 
a gradual emergence of narrative features of increasing duration 
and complexity along the processing hierarchy, from early sensory 
areas into higher order cortical areas (Fig. 1). In support of our 
interpretation, we found that the lag gradient is absent when the 
temporal structure of the story is disrupted due to word scram-
bling (Fig. 3B).

Interestingly, the propagation of linguistic information unfolds 
over several seconds. As demonstrated by our simulation, these 
slow timescales are driven by the temporal structure of narratives, 
in which words are integrated into sentences, which are further 
integrated into paragraphs and events. This stimulus-locked infor-
mation flow across brain areas revealed by ISFC was not previously 
observed because WSFC is driven mainly by intrinsic fluctuations, 
which propagate at a faster time scale (−1 ~ 1 s) (29–31). The long 
lags we observed (up to 9 s) (Fig. 3A) cannot be explained by 

regional variations in neurovascular coupling (47) or transient 
activity impulses at event boundaries. If the lag gradient only 
reflects variations in neurovascular coupling across regions, it 
should be present both when we isolate stimulus-driven activity 
using ISFC and when we examine idiosyncratic neural responses 
using WSFC. Instead, however, the lag gradient was detected only 
with ISFC, but not WSFC (SI Appendix, Fig. S8). In addition, 
we found that transient event boundaries (32–37) did not account 
for the lag gradient (SI Appendix, Fig. S10).

Despite the shared gradient pattern in the peak lag matrices, 
variation across stories is observed (SI Appendix, Fig. S5). Story 
length, the number of participants, their level of engagement (48, 
49), and, as our simulation indicates, the temporal structure of 
the story—including the length of interparagraph pauses, speech 
rate, and the mean and variance of linguistic/narrative unit lengths 
(SI Appendix, Fig. S16)—could all differentially affect the signifi-
cance of ISFC peaks across stories/datasets. If we have to speculate, 
the robust ISFC peaks in “Sherlock” might be due to its length 
(second longest in our stories) and the fact that it is a fast-paced 
story involving several deaths, violence, drugs, and memorable 
characters. It has been found that emotional moments in narratives 
are associated with higher intersubject synchronization (48, 49).

Our simulation provides a simple computational model for how 
information is integrated within each level of the processing hier-
archy and propagates to the next level. This model takes as input 
the natural temporal structure of the story (including the length 
of interparagraph pauses, speech rate, and the mean and variance 
of linguistic/narrative unit lengths) and integrates these units along 
the processing hierarchy (while accounting for the BOLD HRF) 
to output simulated fMRI signals. This simulation allows us to 
parametrically manipulate a wide range of structural narrative 
features, both within and beyond the bounds of natural speech 
(SI Appendix, Fig. S16), to reveal the conditions under which the 
lag gradient emerges: a) a cortical hierarchy of increasing process-
ing timescales (Figs. 1 and 4) (5); b) hierarchically nested linguistic/
narrative events of increasing size along the processing hierarchy 
(Fig. 5 B and C) (22, 23); and c) gradual increasing brain activity, 

Fig. 5. Simulated peak lag matrix. (A) Simulating the peak lag matrix observed during story-listening fMRI data (Fig. 3A) using parameters derived from a 
story stimulus (the same parameters as in Fig. 4 and SI Appendix, Table S1). (B) Simulating the lag matrix observed during scrambled story (scrambled words) 
(Fig. 3B), by setting mean unit length = 1 and unit length variance = 0. (C) Lag matrix from the nonnested structure, created by combining levels extracted from 
independently generated nested structures, which disrupts the nesting relationship between different levels, similar to the scrambled story, while preserving 
the spectral properties of individual time series (P < 0.05, FDR correction).
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along with information accumulation, within the boundaries of 
events at each processing level (32, 35, 39–44), combined with a 
reset of activity (buffer clearing) at event boundaries (7) (see tem-
poral integration function in Figs. 1B and 6).

Our simulation demonstrates that the remarkably large tem-
poral scales of the observed lag gradient in the brain result from 
the hierarchically nested temporal structure of natural language. 
In this simple model, information integration at varying granu-
larity (e.g., word, sentence, and paragraph) is sufficient to yield 
the internetwork lag gradient (Fig. 5) and spectral properties 
observed in the fMRI data (SI Appendix, Fig. S15). Our model 
also reflects an effort to bridge the gap between studies of natu-
ralistic narratives and the rich literature based on simpler, well-con-
trolled language stimuli. We show that the complex brain dynamics 
observed during narrative processing can emerge from a relatively 
simple temporal integration process found with well-controlled 
phrases and sentences (39–44).

Importantly, we note that our computational model is not the 
only one that could generate the predicted lag gradient. We sim-
ulated brain responses to narratives of different temporal structures 
devoid of actual narrative contents. Our aim is to combine separate 
findings that point to the same cortical hierarchy with the simplest 
model possible. However, narrative processing is unlikely to be 
strictly unidirectional (50). The lag gradient only captures the 
dominant bottom-up process of narrative construction 
(SI Appendix, Fig. S9). More complex models might be necessary 
to capture intricate content-/context-sensitive predictive processes. 
More studies are also needed to examine recurrent or bidirectional 
connectivity, causal relations between networks, and nonstationary 
information flow over time.

Our results and simulation indicate that the DMN roughly 
corresponds to level 6 of the model (which has narrative units on 
the scale of 200–300 words with the simulation parameter as in 
SI Appendix, Table S1), supporting the idea that the DMN is the 
apex of the cortical processing hierarchy, integrating information 

on the scale of paragraphs and narrative events (3, 4). Since DMN 
responses track features of the stimulus evolving over long times-
cales, it is relatively invariant to changes in low-level stimulus 
properties. For example, stories that preserve the same meanings 
across forms will evoke similar activity patterns across subjects 
within the DMN but not in lower level areas of the processing 
hierarchy. This effect was documented for stories spoken in two 
different languages (51), stories converted to visual animations 
(52), and stories told using synonyms (8). These findings suggest 
that the DMN builds abstract, context-sensitive representations 
of the situation conveyed by the narrative (4). The current study 
provides a simple computational model for how different stages 
of the cortical processing hierarchy sequentially integrate infor-
mation over time to provide the building blocks for the DMN’s 
rich representation of situations and narrative events.

Our results are also consistent with reports on the spatiotem-
poral dynamics of brain responses to naturalistic stimuli. A hier-
archically nested spatial activation pattern has been revealed using 
movie, spoken story, and music stimuli (22, 23, 53). Chien and 
colleagues (7) reported a gradual alignment of context-specific 
spatial activation patterns, which was rapidly flushed at event 
boundaries, similar to the temporal integration function we 
adopted here. Taken together, the empirical findings, combined 
with our simulation, indicate that the spatiotemporal neural 
dynamics reflect the structure of naturalistic, ecologically relevant 
inputs (6) and that such information is preserved even with the 
poor temporal resolution of fMRI. Although the current findings 
are derived from listener–listener coupling, the interregional 
dynamics may shed light on the lags observed in speaker-listener 
coupling (54–59). Given a particular seed region in the speaker’s 
brain, we would expect to observe coupling at differing lags for 
different target regions in the listener’s brain, and these lags may 
vary based on the temporal structure of the speaker’s narrative.

Our results demonstrate both the importance of using inter-
subject methods to isolate stimulus-driven signals and the value 

Fig. 6. Lag matrices generated using different temporal integration functions (P < 0.05, FDR correction). The linearly and logarithmically increasing temporal 
integration functions yield a simulated peak lag matrix similar to the one observed in fMRI data; the symmetric triangle and boxcar functions, as well as the 
linearly decreasing function, do not.
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of data aggregation. The fact that we obtained nonzero 
internetwork lag only with ISFC but not WSFC (SI Appendix, 
Fig. S8) indicates that stimulus-driven network configuration 
may be masked by the idiosyncratic fluctuations that dominate 
WSFC analyses (24, 25). Furthermore, although the internetwork 
lags could be observed within individual stories (SI Appendix, 
Fig. S5), the gradient pattern is much clearer after aggregating 
across stories (Fig. 3). Data aggregation is particularly important 
when using naturalistic stimuli because it is impossible to con-
trol the structure of each narrative (e.g., speaking style, duration, 
complexity, and content) (38, 60–62). With these methods, we 
are able to reveal the internetwork lag gradient driven by natu-
ralistic narratives, as predicted by the model of shared informa-
tion flow along the cortical processing hierarchy. Further work 
will be needed to examine recurrent or bidirectional information 
flow and to decode the content of narrative representations—
specific to each story—as they are transformed along the cortical 
hierarchy.

Materials and Methods

fMRI Datasets. This study relied on eight openly available spoken story datasets. 
Seven datasets were used from the “Narratives” collection (OpenNeuro: https://
openneuro.org/datasets/ds002245) (63), including “Sherlock” and “Merlin” (18 
participants, 11 females) (57), “The 21st year” (25 participants, 14 females) (64), 
“Pie Man (PNI)”, “I Knew You Were Black”, “The Man Who Forgot Ray Bradbury”, 
and “Running from the Bronx (PNI)” (48 participants, 34 females). One dataset 
was used from Princeton Dataspace: “Pie Man” (36 participants, 25 females) 
(https://dataspace.princeton.edu/jspui/handle/88435/dsp015d86p269k) (25). 
Two nonstory datasets were also included as controls: a word-scrambled “Pie 
Man” (36, participants, 20 females) dataset and a resting-state dataset (36 par-
ticipants, 15 females) (see the Princeton DataSpace URL above) (25). All datasets 
were acquired with a TR of 1.5 s.

All participants reported fluency in English and were 18 to 40 y in age. The 
criteria of participant exclusion have been described in previous studies for 
“Sherlock”, "Merlin”, "The 21st year”, and “Pie Man.” For “Pie Man (PNI)”, “I Knew 
You Were Black”, “The Man Who Forgot Ray Bradbury”, and “Running from the 
Bronx (PNI),” participants with comprehension scores 1.5 standard deviations 
lower than the group means were excluded. One participant was excluded from 
“Pie Man (PNI)” for excessive movement (translation along the z-axis exceeding 
3 mm).

All participants provided informed, written consent, and the experimental 
protocol was approved by the institutional review board of Princeton University.

fMRI Preprocessing. fMRI data were preprocessed using FSL (https://fsl.fmrib.
ox.ac.uk/), including slice time correction, motion correction, and high-pass fil-
tering (140-s cutoff). All data were aligned to standard 3 × 3 × 4-mm Montreal 
Neurological Institute space (MNI152). A gray matter mask was applied.

Functional Networks. Following Simony and colleagues (25), we defined 6 
intrinsic connectivity networks within regions showing reliable responses to 
spoken stories. Voxels showing top 30% ISC in at least 6 out of the 8 stories were 
included. Using the k-means method (L1 distance measure), these voxels were 
clustered according to their group-averaged WSFC with all the voxels during 
resting. We refer to these functional networks as the AUD, vLAN, dLAN, ATT, and 
default mode (DMNa and DMNb) networks (SI Appendix, Fig. S1A). To ensure that 
our results hold for finer grained functional networks, we further divided each of 
the six networks into ten subnetworks, again by applying k-means clustering to 
resting-state WSFC (k = 10 within each superordinate network).

To compare these intrinsic functional networks with the TRW hierarchy, we 
computed the TRW index (i.e., intact > word-scrambled story ISC) following 
Yeshurun and colleagues (8) for voxels within regions showing reliable responses 
to spoken stories, using the intact and word-scrambled Pie Man. Six TRW networks 
were then generated by splitting the TRW indices into six bins by five quantiles 
(SI Appendix, Fig. S2).

We also include results using networks pre-defined based on whole-brain func-
tional parcellation of resting-state fMRI data (28). The same ISC mask was applied. 

One predefined network is excluded for encompassing less than 10 voxels in 
the ISC mask.

WSFC, ISFC, and ISC. In this study, WSFC refers to within-subject interregion 
correlation, while ISFC refers to intersubject interregion correlation. ISC refers 
to a subset of ISFC, namely, ISFC between homologous regions (SI Appendix, 
Fig. S3). ISFC and ISC were computed using the leave-one-subject-out method, 
i.e., correlation between the time series from each subject and the average time 
series of all the other subjects (24).

Before computing the correlation, the first 25 and last 20 volumes of fMRI 
data were discarded to remove large signal fluctuations at the beginning and 
end of time course due to signal stabilization and stimulus onset/offset. We then 
averaged voxelwise time series across voxels within network/region masks and 
z-scored the resulting time series.

Lag-correlations were computed by circularly shifting the time series such 
that the non-overlapping edge of the shifted time series was concatenated to the 
beginning or end. The left-out subject was shifted while the average time series 
of the other subjects remained stationary. Fisher’s z transformation was applied 
to the resulting correlation values prior to further statistical analysis.

ISFC Lag Matrix. We computed the network × network × lag ISFC matrix 
(SI Appendix, Fig. S3) and extracted the lag with peak ISFC (correlation) value 
for each network pair (Fig. 2). The peak ISFC value was defined as the maximal 
ISFC value within the window of lags from −15 to +15 TRs; we required that the 
peak ISFC be larger than the absolute value of any negative peak and excluded 
any peaks occurring at the edge of the window.

To obtain the mean ISFC across stories, we applied two statistical tests. Only 
ISFC that passed both tests were considered significant (Fig. 3A and SI Appendix, 
Figs. S2D and S6, and lag matrices for the intact story in SI Appendix, Fig. S8). First, 
we performed a parametric one-tailed one-sample t-test to compare the mean 
ISFC against zero (N = 8 stories) and corrected for multiple comparisons by con-
trolling the false discovery rate (FDR; 6 seed × 6 target × 31 lags; q < 0.05) (65).

Second, to exclude ISFC peaks that only reflected shared spectral properties, we 
generated surrogates with the same mean and autocorrelation as the original time 
series by time-shifting and time-reversing. We computed the correlation between 
the original seed and time-reversed target with time-shifts of −100 to +100 TRs. The 
resulting ISFC values were averaged across stories and served as a null distribu-
tion. A one-tailed z-test was applied to compare ISFCs within the window of lag 
−15 to +15 TRs against this null distribution. The FDR method was used to control 
for multiple comparisons (seed × target × lags; q < 0.05). When assessing ISFC 
for each story, only this second test was applied, and all possible time-shifts were 
used to generate the null distribution (Figs. 2C and 3B and SI Appendix, Fig. S5, 
the lag matrices for the scrambled story and resting-state data in SI Appendix, 
Figs. S8 and S10B).

PCA of the Lag Matrix. We examined whether multiple lag sequences simi-
larly contributed to the lag matrix, using the method introduced by Mitra and 
colleagues (31). We applied PCA to the lag matrix obtained from the averaged 
ISFC across stories, after transposing the matrix and zero-centering each column. 
Each principal component represents a pattern of relative lags, in other words, 
lag sequences. We computed the proportion of overall variance in the lag matrix 
accounted for by each component in order to determine whether more than one 
component played an important role.

Word/Sentence/Paragraph Boundary Effect. To test the transient effect of 
linguistic boundaries on internetwork lag, we computed the lag-ISFC after regress-
ing out activity impulses at boundaries. A multiple regression model was built 
for each subject. The dependent variable was the averaged time series of each 
network, removing the first 25 scans and the last 20 scans as in the ISFC analysis. 
The regressors included an intercept, the audio envelope, and three sets of finite 
impulse functions (−5 to +15 TRs relative to boundary onset), corresponding to 
word, sentence, and paragraph (event) boundaries. We then recomputed lag-ISFC 
based on the residuals of the regression model.

Word/Sentence/Paragraph Length Effect. We replicated the sentence length 
(39–44) and paragraph length (32, 35) effect with the “Sherlock” and “Merlin” 
datasets, which were collected from the same group of participants. The onsets 
and offsets of each word, sentence, and paragraph (event) were manually time-
stamped. Given the low temporal resolution of fMRI (TR = 1.5 s) and the difficulty D
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of labeling the onset/offset of each syllable, they were estimated by dividing the 
duration of each word by the number of syllables it contains.

We built individual GLM models that included regressors corresponding to the 
presence of syllable, word, sentence, and paragraph respectively, accompanied 
by three parametric modulators: accumulated syllable number within words, 
accumulated word number within sentences, and accumulated sentence number 
within paragraphs. These parametric regressors were included to test whether 
brain activations accumulate toward the end of word/sentence/paragraph; the 
longer the word/sentence/paragraph the stronger the activations. In addition to 
the regressors of interest, one regressor was included for speech segments with-
out clear paragraph labels. We did not orthogonalize the regressors to each other.

Effect maps of the three parametric modulators (i.e., word length, sentence 
length, and paragraph length) from the individual level models of both stories 
were smoothed with a Gaussian kernel (FWHM = 8 mm) and input to three group-
level models to test the word, sentence, and paragraph length effects respectively 
(flexible factorial design including the main effects of story and participant; P < 
0.005, not corrected). We observed sentence and paragraph length effects. Using 
the same threshold, no word length effect was observed,

Power Spectral Density Analysis. We performed spectral analyses following 
Stephens et al. (2013) (15). As for the connectivity analysis, we cropped the first 25 
and last 20 scans and z-scored the time series. For each voxel within regions showing 
reliable responses to spoken stories, the resulting time series was averaged across 
subjects and normalized across time. The power spectrum of the group-mean time 
series was estimated using Welch’s method with a Hamming window of width 99 s 
(66 TRs) and 50% overlap (based on the parameters from Stephens et al. (2013) (15)). 
The power spectra of individual voxels were averaged across stories. We then split the 
voxels into six clusters of equal size according to their low-frequency power (cumulative 
power below 0.04 Hz), following Stephens et al. (2013) (15) (SI Appendix, Fig. S15B). 
Similar PSD analyses were applied to each level of the simulated BOLD signals. The 
resulting power spectra were averaged across 30 simulations (SI Appendix, Fig. S15A).

Simulating the Construction of Nested Narrative Structures and the 
Corresponding BOLD Responses. To illustrate how information accumulation 
at different timescales could account for the internetwork lag gradient during 
story-listening, we simulated the construction of nested narrative structures closely 
following the statistical structure of real spoken stories and generated BOLD 
responses at each processing level. To build the first level of a nested structure, we 
sampled a sequence of 3,000 word durations with replacement from “Sherlock,” 
which is the longest example of spontaneous speech among our datasets, recorded 
from a non-professional speaker without rehearsal or script (SI Appendix, Fig. S11). 
Boundaries between units at the first level were set up accordingly.
Unit length. First-level units were integrated into units of the next level with a 
lognormal distributed unit length; e.g. integrating three words into a phrase (unit 

length = 3) (SI Appendix, Fig. S11). Boundaries between second-level units were 
inserted accordingly. Second-level units were integrated into the third-level units 
following the same method. A nested structure of six levels was thus generated.
Temporal integration function. Postulating that information accumulation 
is accompanied by increased activity, brain responses within each level of the 
nested structure were generated as a function of unit length. For example, a 
linear temporal integration function generates activity [1 2 3] for a “phrase” (i.e., 
a Level 2 unit) consisting of three “words” (i.e., Level 1 units). The first (word) level 
integration was computed based on syllable numbers sampled from “Sherlock” 
along with word durations.
Pause length and pause effect size. In naturalistic narratives, boundaries 
between high-level units are often accompanied by silent pauses (SI Appendix, 
Fig. S12). Therefore, we inserted pauses with normally distributed lengths at the 
boundaries of the highest level units (SI Appendix, Fig. S11). Activity during the 
pause period was set as 0.1 SD below the minimum activity of each level.

To account for HRF delay in fMRI signals, we applied the canonical HRF 
provided by the software SPM (https://www.fil.ion.ucl.ac.uk/spm/) (66) and resam-
pled the output time series from a temporal resolution of 0.001 s to 1.5 s to match 
the TR in our data. We ran 30 simulations for each set of simulation parameters. 
Each simulation produced different narrative structures (equivalent to different 
stories). The peak lag of the mean interlevel correlation across simulations was 
extracted and thresholded using the same method as in the ISFC analysis (Fig. 2).

To examine whether the simulated and real fMRI signals shared similar power 
spectra, we also applied the power spectral density analysis to the simulated 
BOLD responses at each of the six levels and averaged across thirty simulations.

We started with a set of reasonable parameters (SI Appendix, Table S1) (speech 
rate = 1, relative to “Sherlock”; unit length mean = 3; unit length variance = 0.5; 
temporal integration function = linearly increasing; mean pause length = 3 s; 
pause effect size = 0.1 SD of the simulated activity) and explored alternative 
parameter sets within the bound of natural speech to test whether interlevel lag 
was robust to parameter changes.

Data, Materials, and Software Availability. This study relied on eight 
openly available spoken story datasets. Seven datasets were used from the 
“Narratives” collection (OpenNeuro: https://openneuro.org/datasets/ds002245) 
(67), One dataset was used from Princeton Dataspace: “Pie Man” (36 partici-
pants, 25 females) (https://dataspace.princeton.edu/jspui/handle/88435/dsp-
015d86p269k) (68).
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