Please cite this article in press as: Shepherd et al., Human-Monkey Gaze Correlations Reveal Convergent and Divergent Patterns of
Movie Viewing, Current Biology (2010), doi:10.1016/j.cub.2010.02.032

Current Biology 20, 1-8, April 13, 2010 ©2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.02.032

Report

Human-Monkey Gaze Correlations
Reveal Convergent and Divergent

Patterns of Movie Viewing

Stephen V. Shepherd,'-* Shawn A. Steckenfinger,?
Uri Hasson,'2 and Asif A. Ghazanfar!:23
Neuroscience Institute

2Department of Psychology

3Department of Ecology and Evolutionary Biology
Princeton University, Princeton, NJ 08540, USA

Summary

The neuroanatomical organization of the visual system is
largely similar across primate species [1, 2], predicting
similar visual behaviors and perceptions. Although re-
sponses to trial-by-trial presentation of static images sug-
gest that primates share visual orienting strategies [3-8],
these reduced stimuli fail to capture key elements of the
naturalistic, dynamic visual world in which we evolved
[9, 10]. Here, we compared the gaze behavior of humans
and macaques when they viewed three different 3-minute
movie clips. We found significant intersubject and interspe-
cies gaze correlations, suggesting that both species attend
a common set of events in each scene. Comparing human
and monkey gaze behavior with a computational saliency
model revealed that interspecies gaze correlations were
driven by biologically relevant social stimuli overlooked by
low-level saliency models. Additionally, humans, but not
monkeys, tended to gaze toward the targets of viewed indi-
vidual’s actions or gaze. Together, these data suggest that
human and monkey gaze behavior comprises converging
and diverging informational strategies, driven by both scene
content and context; they are not fully described by simple
low-level visual models.

Results

Brains evolved to guide sensorimotor behavior within an
immersive, interactive, ever-changing environment. In the
laboratory, however, dynamic and interactive environments
are problematic because subjects’ instantaneous responses
to a stimulus change their perceptual experience. For exam-
ple, although movie viewing offers (at best) a minimalistic
model of real-world interactions, viewers’ perceptions cru-
cially drive and depend upon ongoing orienting behaviors.
Commercially produced movies nonetheless evoke reliable,
selective, time-locked activity in many brain areas [11-13].
Shared perceptual responses to movies depend upon
shared gaze behavior, which in turn depends upon shared
expectations, goals, and strategy [14-17]; predictably, then,
these movies also evoke reproducible gaze behavior [9, 10,
18, 19]. To what extent are these stereotyped experiences
and perceptual decisions driven by low-level visual cues,
as opposed to higher-order features such as ethologically
significant objects, actions, or narrative content? One
approach to answering this question is to examine the
behavior of a closely related species, such as the macaque,
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that shares relevant neural structures involved in gaze
control [20]. The gaze control system of the macaque is the
best-studied primate model of the nested, iterative, sensori-
motor decision loops that make up our natural behavior [21-
25] and comprises an important substrate in which to
address the evolution of behavior. A second approach is
to examine whether gaze behavior can be predicted by
neurally inspired computational models of visual saliency.
Such models have proven effective at locating areas of
interest in static scenes based on low-level visual cues [26,
27]. In the present study, we test the hypothesis that humans
and monkeys have adapted shared neural mechanisms to
identify, localize, and monitor distinct sets of behaviorally
relevant stimuli.

Specifically, we combined behavioral and modeling ap-
proaches to compare how humans, monkeys, and computer
simulations respond during initial and repeat viewings of
movie clips. Clips were taken from three films. One movie
featured monkeys in natural environments (the BBC’s The
Life of Mammals), one featured cartoon humans and animals
(Disney’s The Jungle Book), and one featured human social
interactions (Charlie Chaplin’s City Lights). The movie clips
were 3 minutes in duration, converted to black and white,
and stripped of their soundtrack. Each subject viewed each
movie clip multiple times in random sequence. Figures 1A-1C
show movie frames with superimposed gaze locations
(humans in blue; monkeys in green); Figures 2A-2C show
representative human and monkey gaze traces (see also
Movies S1-S3 available online). We found that the patterns
of fixations of humans and monkeys across the movie clips
were broadly similar. Scanpaths were significantly correlated
across different viewings by humans and monkeys. These
correlations were especially pronounced among humans, for
whom the average interscanpath correlation (ISC) was almost
as high between (r = 0.39, permutation test, p < 0.001) as within
subjects (r = 0.44, p < 0.001), consistent with past reports [10].
Correlations between monkeys were also significant, but
substantially lower than among humans (average same-
monkey r = 0.22, p < 0.001; between-monkey r = 0.10, p <
0.001); correlations between species were significant and of
comparable size to correlations between individual monkeys
(average r = 0.10, p < 0.001) (Figure 2D; see also Figure S1A).
Finally, eye movement speed, like gaze position, was
correlated between viewers (average same-human r = 0.17,
p < 0.001; between-human r = 0.14, p < 0.001; across-species
r = 0.04, p < 0.001; between-monkey r = 0.04, p < 0.001;
same-monkey r = 0.11, p < 0.001; Figure 2E; see also Fig-
ure S1B). The most likely way for such correlations to arise is
if different primates fixate similar locations at similar times;
however, because correlation is invariant to shifting and
scaling transformations, additional analyses were necessary
to confirm this interpretation. We directly analyzed scanpath
overlap, counting the percentage of samples in which one
scanpath was within 3.5° of the other: Human scanpaths over-
lapped on average 70% of the time between repetitions and
65% between individuals; monkeys overlapped 33% between
repetitions and 27% between individuals; between species,
scanpaths overlapped 31% of the time (Figure 2F). Together,
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A The Life of Mammals
Frame 31

B The Jungle Book
Frame 31

C City Lights
Frame 31

Figure 1. Video Scenes with Superimposed Gaze Coordinates

Example frames from The Life of Mammals (A), The Jungle Book (B), and City Lights (C), shown with superimposed gaze coordinates (monkeys, green;

humans, blue).

these findings suggest that humans and monkeys use similar
spatiotemporal visual features to guide orienting behavior.
Such similar scanpaths can arise in a variety of ways. One
possibility is that shared orienting behaviors are driven solely
by salient low-level visual features. At the other extreme,
shared orienting behaviors might be driven primarily by high-
level behaviorally relevant narrative content. To distinguish
between these possibilities, we compared human and monkey
scanpaths to artificial scanpaths generated by a well-validated
low-level saliency model [26-29]. Indeed, artificial scanpaths
did correlate with human and monkey gaze positions in our
experiment (Figure 2D, orange bars), but even the best-corre-
lated artificial scanpath (r = 0.06, p < 0.001; see Experimental
Procedures) played a negligible role in mediating primate
ISCs: residual ISCs were just as pronounced after partialing
out similarities to artificial scanpaths (average residuals:
same-human r = 0.44; between-human r = 0.39; across-
species r = 0.10; between-monkey r = 0.09; same-monkey
r = 0.22). Artificial scanpaths were less successful at modeling
the timing of attention shifts (r = 0.01, p < 0.05) and did not
predict primate ISCs in gaze shift timing. Although artificial
scanpaths overlapped with observed human and monkey
scanpaths 28% and 20% of the time, respectively (for the
best-performing simulation, see Figure 2F, orange bars), they
were strikingly poor at predicting human and monkey overlap:
of the 31% of samples in which human and monkey gaze
overlapped, only 1 in 15 (2.1% of total) also overlapped the

simulated scanpath (Figure 2F, inset). Application of multidi-
mensional scaling to average normalized interscanpath dis-
tances revealed that each video produced a distinct cluster
of human, monkey, and simulated scanpaths (Figure S2); for
The Life of Mammals and the The Jungle Book movie clips,
human and monkey scanpaths clustered tightly and were
separate from artificial scanpaths.

Tracking the standard deviation of gaze coordinates across
viewers as a function of time proved to be an effective way of
screening for patterns of interactions with the environment. By
tracking the standard deviation of human (Figure 3A) and
monkey (Figure 3B) gaze coordinates as they watched The
Life of Mammals, we identified moments at which gaze was
significantly clustered (below shaded area) or dispersed
(above shaded area). Furthermore, by comparing human and
monkey results to one another or to the standard deviation
across all primate scanpaths (Figure 3C), we can define scenes
of interest in four categories: (1) scenes that significantly
dispersed both human and monkey gaze (Figures 3A and 3B,
gray boxes above shaded area; example in Figure 3D),
(2) scenes that significantly clustered one species while
dispersing another (Figures 3A and 3B, orange diamonds;
examples in Figure 3E), (3) scenes that significantly clustered
both human and monkey gaze in the same place (Figures 3A
and 3B, gray boxes below shaded area; example in
Figure 3F), and (4) scenes that separately clustered human
and monkey gaze at different locations (Figures 3A and 3B,
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red circles; example in Figure 3G). Both humans and monkeys
generally looked toward faces and toward interacting individ-
uals (Figure 3F), and although both humans and monkeys
sometimes scanned the broader scene (Figure 3D), monkeys
shifted gaze away from objects of interest more readily
and more often. For example, of the three examples of differ-
ential clustering shown in Figure 3E, two occurred when
monkeys shifted gaze away from regions of interest to scan
the background, and one occurred when monkeys, but not hu-
mans, quickly scanned newly revealed scenery during a
camera pan. Monkeys and humans sometimes made collec-
tively different decisions about where to look, and these
differences sometimes reflected differential understanding of
movie content: for example, whereas humans used cinematic
conventions to track an individual of interest, looking to the
character appearing centermost on the screen, monkeys
instead tracked the more active member of a pair—even as
he jumped offscreen (Figure 3G). To identify crucial visual
stimuli omitted from the low-level saliency model, we selected
frames on which a species’ gaze was strongly clustered but far
from the simulated scanpath. We then contrasted image
content at three locations on each frame: a location viewed
by a monkey, a location viewed by a human, and the location
selected by the artificial scanpath (Figure 4). On each frame,
these three locations were scored (blindly, in random order)
as including an individual’s body, hands, face, ears, eyes, or
mouth and as being the target of another individual’s actions
or attention. We found that humans and monkeys gazed
toward individuals in a scene significantly more than predicted
by low-level visual saliency models. Both species looked
particularly often at faces and eyes. Remarkably, humans,
but not monkeys, strongly attended objects being manipu-
lated or examined by others.

Although statistically significant, the interspecies ISCs were
low in magnitude. One explanation for the low magnitude
could be species differences in basic eye movements.
For example, although humans and monkeys displayed a
strong central bias, monkeys exhibited a broader spatial range
of fixations (Figure S3A). Similarly, although the dynamics of
eye movement were similar between species, humans
exhibited shorter saccades and longer fixations than monkeys
(Figure S3B). These data are consistent with previous reports
(e.g., [30-32)]) and suggest that differences in gaze dynamics
during movie viewing contribute to lowered ISCs between
species.

Discussion

We found that gaze behavior during movie viewing was signif-
icantly correlated across repetitions, individuals, and even
species. Gaze behavior during temporally extended video
likely depends on species-specific cues, the ability to integrate
events over time, and familiarity and fluency with videos. ISCs
were substantially stronger among human participants than
among monkeys or between humans and monkeys. Computa-
tional models of low-level video saliency poorly accounted
for behavioral correlations within and between species.
Primate scanpaths significantly overlapped, but this overlap
seemed not to be mediated by low-level visual saliency: in
particular, low-level models missed crucial biological stimuli
such as faces and their expressions, bodies and their move-
ments, and (particularly for humans) observed social signals
and behavioral cues. ISCs during natural viewing suggest
that in the absence of explicit, immediate goals—intrinsic or

instructed—orienting priorities are overwhelmingly similar
[9, 10, 31] and focused on faces and social interactions.
The importance of such behaviorally relevant visual cues
has been supported by findings that primates quickly discrim-
inate animate stimuli [33], facial locations [34, 35], facial
expressions (reviewed in [36]), and gaze directions [34, 37,
38] and encode these social variables in neurons governing
attention [36, 39-41].

Although ISCs between species and between monkeys were
significant, they were lower than among humans. Several
accounts may explain why correlations between monkeys
were less pronounced than between humans, as has previ-
ously been reported for still images [42]. Like Berg et al. [30],
we found that humans and monkeys have similar gaze
behavior but differ in the degree of central bias, in the duration
and regularity of fixation periods, and in the amplitude of
saccades (Figure S3). This may suggest species-specific
visual strategies, with monkeys fixating for short and stereo-
typed intervals separated by large saccades and humans
fixating for more prolonged and variable periods. Such differ-
ences might facilitate relatively fast threat and resource detec-
tion by monkeys and are also consistent with the finding that
monkeys abbreviate fixations toward high-risk social targets,
such as high-ranking male faces [43]. Alternatively, monkeys
may fail to orient systematically in response to video content
because they fail to attend toward or understand the meaning
of videos. Our findings echo reports that monkeys poorly inte-
grate and generalize concepts from laboratory experiences
[44, 45] and choose to watch videos only after accruing
adequate experience with the medium [46]. Most humans are
familiar with video broadcast, and this familiarity likely both
shapes viewer expectations and increases viewer interest;
likewise, cinematographers craft movies to entertain humans,
not monkeys. Indeed, human gaze anticipates areas of interest
even when viewing novel movie scenes [31]. If monkeys were
inadequately engaged by video, it was not solely due to
anthropocentric visual content: Humans and monkeys had
similar responses to the three videos, independent of ecolog-
ical relevance. For both species, The Jungle Book—a chil-
dren’s cartoon—strongly and consistently captured gaze,
whereas City Lights—a visually crowded comedy—did so
weakly (see Figure S1).

Our world is not static, and subtle perceptual behaviors,
such as orienting, transform incoming sensation. However,
ISCs suggest that across primates, complex and dynamic
stimuli nonetheless may evoke consistent cognitive and
behavioral responses. Human gaze is nearly as consistent
across individuals as across repetitions; furthermore, signifi-
cant correlations are evident between monkeys and between
monkeys and humans. These findings extend the pioneering
experiments of Buswell [47] and Yarbus [17] to natural
temporal sequences: Although our data cannot reveal covert
orienting decisions, they strongly suggest that primates attend
similar features and shift attention at similar times. Weaker
correlations in monkeys than in humans may be due to species
differences in vigilance or fluency. Importantly, ISCs within and
between species were greater than could be explained by low-
level saliency models: In particular, primates respond to bio-
logically relevant features including animate objects and
faces. Finally, we found that humans, but not monkeys,
strongly attended the foci of other individuals’ attention and
activity. This tendency is provocative and suggests a synchro-
nizing force at work in human social evolution. Primates tend
to passively orient in similar directions, making observed
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Figure 2. Correlation in Gaze across Scanpaths

(A-C) Correlations are evident across humans, monkeys, and between species. Here, scanpaths are split into vertical and horizontal coordinates and plotted
for two humans viewing City Lights (local correlation r = 0.66) (A), a human and a monkey viewing The Jungle Book (local correlation r = 0.08) (B), and one
monkey during repeated viewings of The Life of Mammals (local correlation r = 0.36) (C). The local correlations are typical of the interhuman, interspecies,
and intramonkey scanpaths, respectively. Significant correlations existed between primate scanpaths produced in response to the same video clip.

(D and E) Both spatial position (D) and eye movement speed (E) were correlated across primate scanpaths, whether produced by the same individual or
a different individual and whether produced by a human (blue) or a monkey (green). Gray bars indicate the permutation baseline for o = 0.05 (thick bars)
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gaze a useful indicator of important environmental features, in
turn incentivizing gaze following [40, 48], which further corre-
lates our collective behavior. Interscanpath correlation may
thus prove important not just because of what it tells us about
the evolution of the visual system, but because of what it
reveals about the evolution of primate societies.

Experimental Procedures

Participants

Two adult male long-tailed macaques, Macaca fascicularis, and four adult
male humans participated in the study. Nonhuman participants were born
in captivity and socially housed indoors; all nonhuman experimental proce-
dures were in compliance with the local authorities, National Institutes of
Health guidelines, and Institutional Animal Care and Use Committee stan-
dards for the care and use of laboratory animals. Human participants
provided informed consent under a protocol authorized by the Institutional
Review Board of Princeton University and were debriefed at the conclusion
of the session. In addition to humans and monkeys, data sets collected from
an artificially intelligent agent were derived from the iLab Neuromorphic
Vision C++ Toolkit [29] (http://ilab.usc.edu/toolkit/downloads-virtualbox.
shtml, downloaded May 26, 2009).

Stimulus Presentation

The three visual stimuli consisted of silent, grayscale, 3-minute digital video
clips taken from City Lights (1931), The Jungle Book (1967), or The Life of
Mammals: Social Climbers (2003). Charlie Chaplin’s film City Lights has
been used in earlier fMRI experiments [10] and features humans in indoor
environments. The Jungle Book, a cartoon, includes simplified caricatures
of human and animal stimuli. Finally, the scene from The Life of Mammals
features macaques in their natural habitat.

Human stimuli were presented on a 60 Hz, 17-inch LCD monitor operating
at 1024 x 768 resolution at a distance of 85 cm. This provided a 22° x 18°
field of view of the monitor. The 770 x 584 videos, centrally located, sub-
tended approximately 17° x 14°. Human eye data were captured with a Tobii
X120 Eye Tracker (www.tobii.com) at 120 Hz. Prior to each session, partic-
ipants completed a five-point calibration. Following calibration, participants
completed a nine-point calibration check three times consecutively and
then viewed the three videos separated by 30 s intervals of blank screen.
A 90 s break preceded another three consecutive nine-point calibration
checks; followed by video presentation again in random order separated
by 30 s blanks. A final nine-point calibration check concluded the session.
To pass each point in the calibration check, the system was required to
report sustained gaze within 2.5° of a 0.4° fixation target.

Monkey subjects sat in a primate chair fixed 74 cm away from a 17-inch
LCD or CRT monitor operating at 60 Hz and 1024 x 768 resolution and
were restrained via head prosthesis. This provided a 25° x 20° view of the
monitor. All video stimuli were located centrally and occupied an area of
770 x 584 pixels; this subtended a visual angle of 19° x 16°. Monkey eye
data were captured with an ASL Eye-Trac 6000 (www.asleyetracking.com)
with either an ASL R6 remote optics camera operating at 60 Hz (LCD rig)
or an ASL high-speed optics camera operating at 120 Hz (CRT rig). Prior
to each session, monkeys completed a nine-point calibration. In the second
session only, nine-point calibration checks confirmed gaze tracking accu-
racy as described above. The sequence of calibration checks and video
playback was identical to that for humans, with the exception that monkeys
were rewarded with juice during calibration checks and were randomly
given juice throughout the course of the videos.

Quantifying Eye Movement Behavior
Eye data were downsampled in MATLAB (www.mathworks.com) to 60 Hz
(10,740 data points), and all offscreen fixations and signal loss were recoded

as “not a number.” In total, this filtering rejected 16.8% of the monkey eye
traces and 11.5% of the human eye traces. To facilitate low-level gaze anal-
ysis, we grouped eye data into saccades or fixations by using a velocity-
based criterion. Fixations were defined as eye movements in which the total
velocity did not exceed 20°/s. Fixations shorter than 100 ms (six samples)
were discarded and integrated into the surrounding saccade, and fixations
separated by 17 ms (one sample) or saccades smaller than 2° were merged
into single fixation events.

Saliency Map and Simulated-Gaze Generation

To model orienting responses to low-level visual stimuli, we generated arti-
ficial scanpaths toward each video with the Sun VirtualBox (www.virtualbox.
org) implementation of the iLab C+++ Neuromorphic Vision Toolkit [29].
Details regarding the development of this toolkit have been published
elsewhere [26-30, 49].

Analysis

For each pair of scanpaths, a general correlation was obtained by averaging
the r values obtained from the series of horizontal and of vertical coordi-
nates. To compare the similarity in gaze shift timing between pairs of
scanpaths, we first smoothed the spatial position across time by using
a Gaussian kernel 100 ms (six samples) in standard deviation and then
calculated correlations in the absolute value of the first derivative. Addition-
ally, we performed an analysis of scanpath overlap, which we operational-
ized as the percentage of time points for which paired scanpath coordinates
were within 3.5° of one another (2.5° error radius + 1° foveal radius). Finally,
to detect high-dimensional scanpath features that may have varied across
scanpaths, we performed a multidimensional scaling (MDS) of interscan-
path distance, normalized by dividing out the average shuffled interscan-
path distance. MDS maps high-dimensional data to a low-dimensional
surface in which map proximity correlates with similarity and was imple-
mented with the MATLAB command midscale.

To determine the significance of interscanpath correlations, we needed to
correct for sample-to-sample correlations within scanpaths. To do this, we
established baselines via a consecutivity-preserving time-shuffling permu-
tation procedure. Instead of randomly sampling each data point individually,
we took the entire sequence of time points, randomly flipped the direction,
and rotated the indices so as to randomize timestamps while adding a single
temporal discontinuity where the last sample looped back to the first. We
then recalculated the statistic to be tested with the newly permuted data
and repeated. This population comprises the “chance” baseline against
which our observations can be compared: If our observations lie outside
the 2.5th and 97.5th percentile, for example, then it is significant at a two-
tailed o level of 0.05. All permutation values reported here used this proce-
dure unless otherwise indicated. (As a precaution, we also performed these
analyses without randomly reversing the temporal order of samples; results
were not significantly altered.)

Because low-level visual features may have influenced human and
monkey gaze in similar ways, we compared primate scanpaths to artificially
generated gaze sequences (described above). Specifically, we correlated
human and monkey gaze behavior with the behavior of artificially generated
simulated eye movements and recalculated interscanpath correlations after
partialing out the artificial scanpath with MATLAB’s partial correlation func-
tion. We likewise compared scanpath overlap between human and monkey
scanpaths and simulated scanpaths, and—to establish whether overlap in
primate scanpaths was mediated by low-level visual features—measured
the three-way overlap between human scanpaths, monkey scanpaths,
and the best-performing simulation.

To determine those factors that consistently influenced human and
monkey gaze but were missed by the low-level saliency model, we selected
frames on which gaze was strongly clustered (the standard deviations of the
gaze locations were in the bottom 5% observed for that species) but where
the artificial scanpath was unusually far from gaze (more than a standard

or 0.001 (thin bars): all primate gaze interscanpath correlations (ISCs) were significant with o < 0.001. Artificial scanpaths produced by a low-level visual
saliency model (orange) were significantly correlated with primate scanpaths in spatial position (. < 0.001) and gaze shift timing (« < 0.05); however, residual
interprimate correlations (yellow) were essentially unchanged despite partialing out shared similarities to artificial scanpaths.

(F) Finally, to confirm that behavioral correlations were driven by visual fixation priorities, we compared the percentage of gaze samples that overlapped
(£3.5°) across different scanpaths. The pattern of results was identical to the pattern observed for intersubject correlation. Furthermore, we found that
samples that overlapped between humans and monkeys rarely overlapped with the best-performing artificial scanpath (2% of samples overlapped between
humans, monkeys, and artificial scanpaths, a small fraction of the 31% of samples that overlapped between humans and monkeys; see inset). These data
rule out the hypothesis that gaze correlations are driven primarily by low-level visual features, at least as characterized by well-established neuromorphic

computational saliency models [27, 29].
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Figure 3. Comparison of Gaze Reliability across Time, by Species

(A-C) The standard deviation of simultaneously recorded gaze coordinates from humans (A), monkeys (B), and both species (C) can, in conjunction, differ-
entiate the visual strategies of monkeys or humans.

(D-G) Different scenes from The Life of Mammals significantly dispersed viewer attention (D, a long shot featuring a number of monkeys) or gathered it
(E, social stimuli captured sustained human interest, whereas newly visible scenery during a pan was quickly surveyed by monkeys). Faces often captured
the attention of all primates (F), whereas dyadic social interactions sometimes produced separate gaze clusters for humans and macaques (G).

deviation above average). When multiple frames were identified within the ~ Additionally, fixations on social agents that fell on faces or hands were
same 0.5 s period, only the first was accepted. We then scored these frames  tallied; facial fixations were likewise tallied based upon fixations on ears,
for image content at three locations—the artificial scanpath, a random eyes, or mouth. Throughout scoring, the observer was blind as to whether
human scanpath, and a random monkey scanpath—in a random order  they were scoring an artificial, human, or monkey scanpath. Finally, the
unknown to the scorer. Image content at a given location was described  significance of differential image content at gaze-selected versus model-
as including a social agent or the target of an agent’s action or gaze.  selected regions was determined by 2 test.
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Supplemental Information includes three figures, Supplemental Experi-
mental Procedures, and three movies and can be found with this article on-
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Figure S1. Gaze ISC across Primates by Movie Clip Source

Across all three movies, spatial position (A) and eye movement speed (B) tended to correlate across
primate scanpaths, whether produced by the same individual or a different individual and whether
produced by a human (left) or a monkey (right). For both species, ISCs were higher and more
consistent for clips from The Life of Mammals (magenta) and The Jungle Book (cyan) than from City
Lights (red). Thick bars illustrate the average r value across pairwise correlations; thin bars, the
standard deviation.
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Figure S2. Interscanpath Distances Reflect Stimulus and Subject Identity

Scanpaths are highly multidimensional stimuli in which meaningful differences can be difficult to
visualize. To simply represent differences between scanpaths, we performed a multidimensional
scaling (MDS) of normalized scanpath distances. This procedure results in a two dimensional map of
observations in which more similar observations are grouped and more dissimilar separated.

(A) MDS of scanpaths evoked by humans (h), monkeys (m), and simulated agents (a) in response to
City Lights (red), The Jungle Book (cyan), and The Life of Mammals (magenta). Scanpaths were most
strongly influenced by video stimulus, then by simulation or species of origin.

(B) Separate MDS of monkey (green), human (blue), and simulated (orange) scanpaths over each
movie, in which letter indicates source identity and shading reflects viewing order (lightest first). In
each movie, monkey and human scanpaths are well-separated from artificial scanpaths, whether
created using “Bayesian surprise” (B), “fancy” (F), or “maxnorm” (M) normalizations (see Methods).
This separation indicates that simulated scanpaths poorly captured common high-dimensional
features of human and monkey gaze behavior. Furthermore, because primate clusters neither
converge nor diverge with repetition, it appears that repeated exposures neither produced more
standardized nor more idiosyncratic gaze behavior: Repetition had no obvious effect on scanpath
similarity.
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Figure S3. Low-Level Gaze Metrics

(A) Average primate gaze distributions for humans and monkeys over all frames and videos indicate
a strong tendency to fixate near the center of the screen.

(B) Left panel: saccade amplitude distribution for monkeys (green) and humans (blue), plotted as the
percent falling in each 6 pixel (= 0.15°) bin, with saccade speed threshold 20°/s and data cleaning as
described in the text. Right panel: fixation duration distribution for monkeys (green) and humans
(blue), plotted as the percent falling in each 50 ms bin; 20% of human fixations lasted over 1 s, with
a mean of 1970 ms. Humans exhibited a greater central bias, made fewer and shorter saccades, and
regularly fixated the screen for long periods with minimal eye movement. Because of the low
spatiotemporal precision of our gaze tracking system, and because smooth pursuits may confound the
discrimination of saccades from fixations, these data may somewhat underestimate the frequency of
small eye movements and register adjacent fixations as single events.



Supplemental Experimental Procedures

Stimulus Presentation
We extracted videos under the fair use doctrine of United States copyright law using DVD Rip
Master Pro (www.mcfunsoft.com), and converted to silent gray-scale videos using Adobe
Premiere Pro 3.0 (www.adobe.com). Videos were encoded in the Xvid (www.xvid.org) codec at
30 Hz; video frames occupied an area of 770x584 pixels. All stimuli were presented with the
Neurobehavioral Systems Presentation 12.2 (www.neurobs.com). Human participants took part
in one session (two repetitions of each video, total), while the monkeys took part in two sessions
separated by several weeks (four repetitions, total). Video stimuli were extracted from:
Chaplin, C. (Producer & Director). (1931). City Lights [Motion picture]. Century City, CA: United
Artists.
Disney, W. (Producer), & Reitherman, W. (Director). (1967). The Jungle Book [Motion picture].
Burbank, CA: Walt Disney Home Video.

Salisbury, M. (Producer), & Attenborough, D. (Host). (2003). The Life of Mammals: Social Climbers
[Motion picture]. Bristol, UK: British Broadcasting Corporation (BBC).

Quantifying Eye Movement Behavior

Raw monkey eye movement data were extracted with Eyenal; a software tool provided by ASL
for use with the ASL Eye-Tracking system. Raw human eye movement data were recorded via
the VisionSpace 1.0 extension linking Tobii and NBS Presentation (http://www.visionspace.at).
To allow the gaze tracking signal to stabilize, data for the first 30 frames (1 s) of each video were
discarded. Eye data were then loaded in MatLab (www.mathworks.com) for further analysis.

Saliency Map and Simulated-Gaze Generation

We applied the saliency map model using publicly available software using available
documentation. We used the intensity, orientation, flicker, and motion feature channels under
three normalization schemes (“surprise”, “fancy”, and “maxnorm”) to produce three alternate
sets of scale-four saliency maps and simulated gaze coordinates; all other settings were left at
default. Because the “fancy” scheme produced scanpaths that best matched observed primate
behaviors, the analyses reported herein used “fancy” scanpaths. The “surprise” maps and
scanpath were generated using the command:

ezvision --T, --movie, --in=/file/path.avi, --out=png:/file/path/##, --vc-chans=IOFM, -
-maxnorm-type=Surprise, --vc-type=Surp, --gabor-intens=20.0, --direction-sqrt, --
display-map-factor=1el 1, --vcx-outfac=5.0e-9, --display-eye=yes, --display-larger-
markers, --pixperdeg=40.0, --fovea-radius=40, --save-vcx-output=yes

while the “fancy” and “maxnorm” maps and scanpaths were generated by substituting "Fancy" or
"Maxnorm" for "NORMALIZATION" below:

ezvision --T, --movie, --in=/file/path.avi, --out=png:/file/path/##, --vc-chans=IOFM, -
-maxnorm-type=NORMALIZATION, --display-eye=yes, --display-larger-markers, --

pixperdeg=40.0, --fovea-radius=40, --save-vcx-output=yes

Simulated gaze coordinates were then extracted from output frames using custom MatLab code.
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