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Comments and Controversies

Loss of reliable temporal structure in event-related averaging of naturalistic stimuli
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To separate neural signals from noise, brain responses measured in neuroimaging are routinely averaged
across space and time. However, such procedures may obscure some properties of neural activity. Recently,
multi-voxel pattern analysis methods have demonstrated that patterns of activity across voxels contain valu-
able information that is concealed by spatial averaging. Here we show that temporal patterns of neural activ-
ity contain information that can discriminate different stimuli, even within brain regions that show no net
activation to that stimulus class. Furthermore, we find that in many brain regions, responses to natural stim-
uli are highly context dependent. In such cases, prototypical event-related responses do not even exist for in-
dividual stimuli, so that averaging responses to the same stimulus within different contexts may worsen the
effective signal-to-noise. As a result, analysis of the temporal structures of single events can reveal aspects of
neural dynamics which cannot be detected using standard event-related averaging methods.

© 2012 Elsevier Inc. All rights reserved.

Introduction

In the climactic scene of the movie Casablanca, Humphrey Bogart
tells Ingrid Bergman “Here's looking at you, kid” and the camera
rests for a second on his stony face. The movie viewer's neural re-
sponses at this moment can be decomposed into two components:
firstly, a generic component that is always observed for any face in
the “face” category; secondly, a component that is specific to seeing
this particular face at this particular point in the narrative. The gener-
ic component and the specific component of the neural response each
make up a measurable proportion of our neural activity, and each are
worthy of neuroscientific study. However, event-related averaging
methods – the standard lens through which cognitive neuroscientists
examine their data (Huettel et al., 2009) – do not treat these compo-
nents equally. Event-related averaging methods are designed to de-
tect the generic (“face” category) component of the response, while
treating the exemplar- and context-specific component as noise.
However, our mental life is substantially tied to the unique combina-
tion of context and features of the present moment. Thus, if we wish
to understand the brain activity that occurs in real life, event-related
averaging methods may need to be complemented by methods that
capture the unique response to each event (Debener et al., 2005;
Duann et al., 2002; Goldman et al., 2009; Hasson et al., 2010;
McKeown et al., 2003).

But how much is truly lost when event-related averaging is used
in real-life stimuli? To answer this question, we consider the case of
real-life spoken sentences. Generative language enables us to con-
struct an unlimited number of sentences, each conveying a unique
message. We find that some regions produce generic responses
that are very similar across all sentences and contexts; however,
other regions produce robust responses whose temporal profile is
specific to each sentence and the context in which it is presented.
Thus, we demonstrate that the neural response to each sentence
of real-life spoken language is unique, in the sense that each sen-
tence may evoke a reliable but nevertheless idiosyncratic response
pattern. Moreover, we provide a simple demonstration of how
employing event-related averaging can obscure such reliable idio-
syncratic information which makes up a substantial proportion of
the responses to real life stimuli.

A complete story S can be represented as a sequence of sentences
S1,S2,…SK. To test whether a particular brain region is “activated” by
these sentences, within the context of event-related analysis, it is
common to make two assumptions: (i) with each stimulus Si we
can associate a prototypical neural response Ni(t) that is generated
in the same way each time Si is presented within a randomized or
counterbalanced ordering , and (ii) all stimuli within class S have a
shared neural response profile, Ni(t)≈N(t), so that variation in the
responses across stimuli can be treated as noise, ξ(t). Thus, the re-
sponse Ri(t) to stimulus Si can be written as Ri(t)=N(t)+ξ(t),
where the noise term includes both instrumental noise as well as
variability in responses across exemplars of the stimulus class.
Under these assumptions, an estimated neural response, N̂ tð Þ, to the
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stimulus class S can be recovered by averaging all of the empirical
event-related responses, Ri(t):

N̂ tð Þ ¼def
1
K

XK

i¼1

Ri tð Þ:

This simple framework is versatile, facilitates experimental con-
trol, and has provided the basis of many foundational discoveries in
cognitive neuroscience (Bentin et al., 1996; Grill-Spector et al.,
1998; Kanwisher et al., 1997; Sergent et al., 1992). In the case of spo-
ken language, however, the two assumptions of the event-related av-
eraging procedure, described above, are violated.

First, the differences in observed responses, Ri(t), may actually result
from the fact that the underlying neural activity, Ni(t) varies in mean-
ingful ways across the different sentences, Si, so that Ni(t)≠N(t). In
such cases, the variability in the response patterns across sentences con-
tains valuable information that should not be treated as noise, ξ(t). Sec-
ond, when we measure the responses to each sentence, Si within the
context of a real life spoken language, then the event-related response
evoked by each Si can vary in interesting ways as a function of stimulus
history. Thus, the response Ri(t) to each sentence, Si, may differ if that
sentence is presented in an alternate context.

In extreme cases, the event-related averaging procedure may
completely average out meaningful variability across sentences, pro-
ducing a flat average response pattern, even though each sentence
evokes a reliable and robust response within the local neural circuits.
Here we demonstrate such an effect by comparing the reliability of
responses to individual sentences across subjects against the reliabil-
ity of the average response across all sentences. In the present study
we only examine the heterogeneity of brain responses across real-
life spoken sentences, and it is not certain whether our critique of
the trigger averaging method is as applicable to event-related designs
which use simpler stimuli. However, we note that even simple check-
erboard stimuli elicit region-specific temporal response profiles
(Gonzalez-Castillo et al., 2012) and large neuronal response variabil-
ity across trials (Debener et al., 2005; Duann et al., 2002).

Materials and methods

Data from eleven subjects (20–36 years) that participated in a
previously published study (Lerner et al., 2011) were reanalyzed in
the current study. Due to problems in the acquisition we discarded
the data from one subject. A complete description of the methods is
described in the initial publication. Here we provide a concise de-
scription of the aspects of the data most relevant for these new anal-
yses. There is no overlap between the goal of the present study, which
focused on event-related averaging, and the prior study, which char-
acterized processing timescales of different brain regions.

Eleven participants listened to a 7 min real-life story (“Pie-man,”
told by Jim O'Grady) that was originally recorded at a live storytelling
performance (“The Moth” storytelling event, New York City). The
same set of subjects also listened to a scrambled version of the
story. The story audio was segmented manually by identifying the
end points of each sentence, and then the order of the sentences
was randomly permuted. The story contained 69 sentences; here we
focused our analysis on all sentences of length 6 s or greater (27
sentences, 6–14 s, mean length 8.8 s). To remove transient global in-
creases or decreases in response amplitude at the beginning and end
of each scan, we cropped the first 13.5 s and the last 12 s of the BOLD
response before starting the analysis. Thus, in the last analysis (Fig. 3),
we could only examine 23 sentences that were not cropped out in
both the intact-context and scrambled-context conditions.

MRI acquisition

Subjects were scanned in a 3 T head-only MRI scanner (Allegra;
Siemens). A custom radio-frequency coil was used for the structural

scans (NM-011 transmit head coil; Nova Medical). For fMRI scans,
300 volumes were acquired using a T2*-weighted echo planar imag-
ing (EPI) pulse sequence [repetition time (TR), 1500 ms; echo time
(TE), 30 ms; flip angle, 75°], each volume comprising 25 slices of
3 mm thickness with 1 mm gap (in-plane resolution, 3×3 mm2).

Parcellation based on timescales

In the original study (Lerner et al., 2011) we presented the story
scrambled at 3 distinct timescales (word level, sentence level and
paragraph level) and also in a temporally reversed order. These ex-
periments revealed a gradual increase, from early sensory areas to
high order areas, in the timescale of processing within each area. In
early auditory cortices (A1+, red in Fig. 1A), brain responses were
driven mainly by the momentary incoming input and were similarly
reliable across all scrambling conditions. Areas adjacent to A1+
along the superior temporal gyrus exhibited intermediate processing
timescales. In these areas, information at the ‘word’ (yellow) or ‘sen-
tence’ (green) timescales or longer was necessary to evoke reliable
activity across subjects. At the apex of the hierarchy we found parietal
and frontal areas, which responded reliably only when intact para-
graphs were presented in a meaningful sequence (blue).

In the current study we used the timescales preferences to
parcellate our voxels into 4 distinct groups, ranging from low level
areas (short timescale) to high order areas (long timescale). This
parcellation helped us to assess whether the trigger-averaging proce-
dure yields different outcomes in early auditory areas, intermediate
“linguistic” areas (where the processing timescale coincides with that
of single words or sentences) and high order areas (where the time-
scale of processing is that of paragraphs, or longer). The parcellation
was performed based on the responses to the four scrambling
conditions (“backwards”, “word-scramble”, “sentence-scramble” and
“paragraph-scramble”), while excluding the intact story condition.
Therefore, the parcellation was determined using independent data
sets, and does not bias the trigger averaging analyses performed here
on the intact story.

Regions of interest (ROIs)

ROI analysis was performed using two ROIs (Fig. 1A): a sensory re-
gion (A1+) and a higher-order region (precuneus). ROIs were de-
fined using data from a different auditory story (for details see
Lerner et al., 2011). These independent ROIs were used to analyze
the responses from the sentences-scrambled condition (Fig. 3), and
also provided an independent method to assess the responses in the
intact story (Fig. 1B).

Data preprocessing

All fMRI data were analyzed using the BrainVoyager QX software
package (Brain Innovation) along with in-house software written in
MATLAB (R2009a, MathWorks, Natick, MA, USA). Preprocessing of func-
tional scans consisted of 3D motion correction, slice time correction,
high-pass filtering and Gaussian spatial smoothing (6 mm full-width at
half-maximum). Anatomical and functional data were registered to
Talairach space (Talairach and Tournoux, 1988) by affine transformation.

Sentence-evoked responses

The sentence-evoked trigger average response was calculated for
individual voxels and for selected ROIs. For each ROI the time course
of each voxel was first z-scored and then averaged across all voxels
within the ROI. The BOLD response was then segmented at the onset
of each sentence (after correcting for the hemodynamic delay using a
fixed delay of 3 s). Before segmentation, each time course was interpo-
lated to millisecond-resolution to resolve small ambiguities (less than
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750 ms) that may emerge when the onset of a sentence falls between
two TRs (TR=1500 ms). Finally, the responses were averaged across
all sentences to obtain a trigger-averaged response.

Reliability measures

Two measures were used to assess the reliability of the brain re-
sponses to the presented sentences. First, we measured the reliability
of the responses to the individual sentences within the intact
(unscrambled) story. The sentence-specific reliability was measured
by concatenating the responses to the 27 analyzed sentences and
correlating the concatenated time-course across subjects (Figs. 1–2).
For each subject, we compared the response to the concatenated
sentences against the mean of the concatenated responses in all
other subjects and then averaged these correlation values across sub-
jects (inter-subject correlation analysis, Hasson et al., 2010). These
analyses were performed on a voxel-by-voxel basis (Figs. 2–3) and
within two selected ROIs (Fig. 1B).

Second, we measured the reliability of the responses to the same
sentence across different contexts (i.e. when the original order of

the sentences is preserved or randomly presented). Inter-context re-
liability was measured, for each individual sentence, by correlating
the average response time-courses in the intact-context and
scrambled-context conditions.

In a standard GLM analysis, experimenters usually assume proto-
typical response profile for each event type. The inter-SC analysis
method differs from conventional fMRI data analysis methods in
that it circumvents the need to specify a model for the neuronal pro-
cesses for any given event. Instead, the ISC method uses the subject's
brain responses to each particular event (for example, a particular
sentence and context) as a model to predict brain responses to the
same sentence within other subjects.

Response amplitude calculation

To characterize the amplitude of the “mean sentence-evoked re-
sponse”, the average sentence-evoked response in each voxel was
fitted with an impulse response model convolved with a standard
hemodynamic response function (Boynton et al., 1996). The mean
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Fig. 1. Event-related averaging can obscure reliable responses to individual stimuli. A) Cortical areas that responded reliably (across subjects) to a recording of a story, presented on
an inflated brain. The colors represent different processing timescales, as determined using a separate study in which the temporal structure of the intact story was disrupted at
different scales (adapted from Lerner et al., 2011). Short timescale (red and yellow), intermediate timescales (green), long timescale (blue). Borders of two ROIs (A1+ and
precuneus) are marked in white. B) Concatenation of the mean z-scored time courses of 27 individual sentences, each longer than 6 s. The vertical dotted lines mark the boundaries
of individual (non-continuous) sentences within the story. Results from A1 (top panel) are presented in red and results from the precuneus (bottom panel) are presented in blue.
Each time course represents the average response time course across independent group of subjects (group 1 n=5, group 2 n=6) who listened to the story. The small insets depict
the average event-related response to these sentences (after z-scoring the signalwithin individuals)within each region. The response is plotted relative to thefirst timepoint (sentence onset)
whichwas subtracted fromeach all other timepoints in a sentence. C) Event-related average response across all sentences in each of theprocessing timescales. For each timescaleweaveraged
the time courses across all voxels and then performed the event-related averaging. In regions with short processing timescales (red), the response was significantly greater than zero. Note
that the temporal patterns of neural activity to different stimulus exemplars may contain information, even within brain regions that show no net activation to that class of stimuli.
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coefficient of the predictor (beta values averaged across subjects)
served as an estimate of the response amplitude.

Statistical analyses

To assess the statistical significance of the inter-subject correlations
of the concatenated sentences we employed a non-parametric surro-
gate data procedure. Statistical significance of each observed correlation
was assessed by comparing against a null distribution generated by
phase-randomization of the empirical BOLD time series (Lerner et al.,
2011). We corrected for multiple statistical comparisons by controlling
the false discovery rate (FDR) of the correlationmapswith a q-criterion
of 0.01 (Benjamini and Hochberg, 1995).

A t-testwas used to testwhether themean response amplitude, after
trigger averaging, was significantly different than zero in each ROI. T-
tests were also used to test whether the average inter context reliability
within eachprocessing timescalewas significantly different from zero. A
one-way ANOVA was used to test for a difference in the mean response

amplitude betweenROIs. All t-testswere corrected formultiple compar-
isons using Holm-Bonferroni (Holm, 1979). Prior to running analysis of
variance (ANOVA) or t-tests on correlation coefficients, a Fisher z-
transformationwas applied. The Fisher-transformationwas also applied
before testing the significance of differences in correlation coefficients
across regions with different timescales (Fig. 2).

Results

To demonstrate the limitations of the event-related averaging pro-
cedure for generative spoken language, we considered the case in
which the stimulus class, S, is the set of sentences spoken in a real-
life narrated story. Each sentence in the spoken narrative was treated
as a discrete event, with an associated time-course at every voxel. We
analyzed the same set of events in two different ways. First, we
concatenated the time-courses in each region-of-interest (ROI) or
voxel and computed the reliability (i.e. correlation ) of the
concatenated time course across subjects using inter-subject correla-
tion (ISC) analysis (Hasson et al., 2010). In this reliability measure-
ment there is no averaging of the time-course across different
sentences. In a second kind of analysis, we characterized the mean
sentence-evoked response amplitude by trigger-averaging, for each
subject, the responses across all sentences in each ROI.

Because the effects of event-related averaging may differ across
brain regions, we performed our analyses separately in early sensory
areas (i.e. early auditory areas, red and yellow in Fig. 1A), in high
order areas (blue in Fig. 1A) and in a set of intermediate areas along
the cortical hierarchy (green in Fig. 1A). We first present data from
two ROIs in sensory (A1+) and higher-order (precuneus) areas
(Fig. 1). These ROIs were identified based on an independent data
set (see Materials and methods), as regions which exhibited short
(A1+) and long (precuneus) processing timescales (Lerner et al.,
2011). Subsequently, we perform the same analyses on all reliable
voxels (Figs. 1C and 2). Fig. 1B presents the concatenated response
to each of the 27 individual sentences, where the response was
calculated separately within two independent groups of subjects.
The matching time-courses demonstrate that individual sentence-
evoked responses were reliable and consistent across the two groups
of subjects in both ROIs (r=0.71 in A1+, r=0.68 in the precuneus).

Next we used event-related averaging to characterize the mean
sentence-evoked response in the A1+ and precuneus ROIs (insets
in Fig. 1B). While the event-related averaging analysis revealed a
clear increase in the mean signal amplitude in early auditory areas,
the same analysis resulted in a flat mean response in the precuneus.
Thus, despite the reliable response to each of the separate sentences
in both A1+ and precuneus (Fig. 1B, main timecourse), only A1+

Fig. 2. Effect of event-related averaging on signal reliability. Reliability of concatenated single sentence time-courses is plotted against the amplitude of the mean response to a sen-
tence in voxels of different processing timescales. Each dot represents the value within a single voxel, with different panels for each processing timescale. In early auditory areas, the
mean response amplitude is strongly correlated with the reliability of responses to individual sentences, while higher order cortical regions exhibit a much weaker correlation. Al-
though the correlation reached significance at all processing timescales aside from the intermediate timescale (red voxels, t(722)=22.23, pb0.001; yellow voxels, t(337)=15.19,
pb0.001; green voxels, t(1174)=6.8, p=0.2 NS; blue voxels, t(2577)=10.08, pb0.001), in a direct comparison the correlation in the shortest processing timescale regions (red)
proved significantly stronger than all other regions (red-yellow, 8.43, pb0.05; red-green, 16.72, pb0.05; red-blue, 14.46, pb0.05, corrected).
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Fig. 3. Reliability of sentence-evoked responses across sentences. The inter-context re-
liability of the sentence-evoked response (average response across participants) is
plotted for each of the processing timescales. The dots represent the reliability of
each sentence (23 sentences) and the squares indicate the mean sentence reliability
of each processing timescale. The short processing timescale regions (red, yellow),
exhibited a significantly positive average correlation (red: t(22)=6, yellow: t(22)=
3.55;pb0.05, corrected). A direct comparison between groups revealed a significant
difference only between the short time-scale (red bar) and long time-scales (green
and blue bars).

504 A. Ben-Yakov et al. / NeuroImage 63 (2012) 501–506



Author's personal copy

shows reliable trigger-averaged response while the precuneus does
not (Fig. 1B, insets).

Performing the same trigger averaging analysis across all voxels
within the four levels of the processing hierarchy revealed that the
amplitude of the responses to the mean (trigger-averaged) sentence
decreased as we moved from sensory regions toward higher-order
brain regions (Fig. 1C). Similar results were obtained when we
trigger-averaged the responses based on the endpoint of each sen-
tence. We quantified these observations by performing a one-way
ANOVA on response amplitudes with processing timescale as the in-
dependent variable. Processing timescale had a significant effect on
response amplitude (F(3,10)=22.24; pb0.001), driven largely by
the early auditory regions (red) which exhibited a significantly great-
er response amplitude (pb0.05,) compared to all other regions. This
region was also the only one to show a response significantly above
zero (t(10)=6.52; pb0.05).

We next quantified the loss of information due to event-related
averaging by comparing the response reliability of the concatenated
sentences (no averaging across sentences) against the response am-
plitude of the mean sentence. The analysis was performed separately
for each voxel within each of the color-labeled levels of the process-
ing timescales (Fig. 2).

Within early auditory areas (red) we observed that the event-
related averaging and the response reliability of the concatenated
sentences produced similar results: therewas a strong positive relation-
ship (r=0.64) between the amplitude of the mean response across all
sentences and the reliability of individual sentences (Fig. 2, red). How-
ever, this strong relationship between the two analysis methods broke
down as we moved up the hierarchy toward higher order cortical
areas. A weaker relationship between amplitude and reliability was ob-
served in areas at an intermediate stage along the processing hierarchy
(green) and in high-order association cortex (blue), indicating that reli-
able information was being lost in the event-averaging procedure.
Moreover, while the reliability of sentence-specific time courses re-
mained high for all voxels across all areas (see y-axis in Fig. 2), the am-
plitude of the mean response across sentences gradually decreased,
ultimately centering on zero amplitude for areas with longer timescales
(see x-axis in Fig. 2).

The event-related responses may vary not only across exemplars
(Figs. 1–2) but also for the same exemplar as a function of the tem-
poral context (Fig. 3). Thus, contextual effects can further hinder the
effectiveness of event-related averaging procedures, even if the
event-averaging is applied only across repetitions of an identical
sentence, Si. To quantify the effect of context on the neural response
to each sentence, we examined the reliability of each sentence with-
in a subject across different contexts (inter-context reliability), and
this analysis was again performed at each level of the processing
hierarchy.

In early auditory regions (red, yellow in Fig. 3) we observed a
strong inter-context reliability for individual sentences (e.g. in A1+
20 out of 23 sentences show reliability greater of 0.25, with a mean
reliability of 0.6; t(22)=6; pb0.05). In contrast, in the longest time-
scale regions (green, blue in Fig. 3) we observed a high variability in
the reliability of responses for single sentences across contexts (e.g.
in the precuneus only 10 out of 23 sentences show reliability greater
of 0.25 with a mean reliability of 0.02, t(22)=0.6;p=NS). An ANOVA
test revealed a significant effect of processing timescale on the inter-
context reliability (ANOVA F(3,22)=6.13, pb0.001), and significantly
stronger correlations for the shortest processing timescale (red) rela-
tive to regions of intermediate and long processing timescales (t
(22)=3.3 and t(22)=2.91, respectively; pb0.05, corrected).

Discussion

Taken together, our results indicate that averaging responses
across sentences actually conceals aspects of neural responses that

are reliable and specific to individual sentences and to their temporal
context. In some brain regions (e.g. near A1+), event-related averag-
ing across stimuli is a good indicator of whether a region is
responding to the stimuli, but in other regions (e.g. the precuneus)
the average response across stimuli can be effectively flat even
though the responses to each sentence may be reliable and
stimulus-selective (Fig. 1C). Thus, a flat mean response does not nec-
essarily indicate an absence of processing for a class of stimuli, and in
some cases, the temporal structure of responses to individual stimuli
will be more diagnostic.

Event-related averaging is a ubiquitously useful tool in cognitive
neuroscience. It is most powerful when dealing with brief presenta-
tion of short and isolated events, where one can assume a canonical
response profile for a given class of stimuli. It can also be useful for
natural stimuli; see the red curve in Fig. 1C as well as (Bartels and
Zeki, 2004; Ben-Yakov and Dudai, 2011; Hasson et al., 2008). Here
we have shown that a canonical response profile will not always be
shared across members, Si, of a class, especially in high-order brain
regions, and even in brain regions that respond reliably to each mem-
ber of the class.

Inter-subject correlation can detect unique event-specific neural
responses not only because it does not average across exemplars,
but also because it takes account of the temporal response profile of
each event. In this sense, the correlation method is analogous to
methods that account for the detailed spatial profile of BOLD re-
sponses across nearby voxels. Averaging responses across nearby
voxels increases the signal to noise ratio, yet also removes informa-
tion that lies in the spatial variability between voxels. Multi-voxel
pattern analysis makes use of the spatial patterns in the neural re-
sponse to achieve increased sensitivity in the detection of cognitive
states (Haxby et al., 2001; Haynes and Rees, 2005; Kamitani and
Tong, 2005; Norman et al., 2006). Similarly, methods that make use
of temporal variability, such as the inter-subject correlation (Hasson
et al., 2004, 2010), time segment classification using MVPA (Haxby
et al., 2011), or ICA (Duann et al., 2002; McKeown et al., 2003) enable
detection of signals that would be lost when considering only the
time-averaged response amplitude.

In the current setting, one way of reducing the cost of event-related
averaging might have been to average across only subsets of the
sentences which have similar duration, meaning, or grammatical fea-
tures. However, this approach faces a number of obstacles. Firstly, the
set of features along which to divide the stimuli is generally unknown a
priori. Second, the range of potential features to which the brain may
be sensitive is vast, and some brain areas may respond to abstract fea-
tures that are not synchronized with stimulus onset or offset. Third, we
have shown that in some cases it is not even possible to define the canon-
ical response profile for one individual sentence because the response to
that individual exemplar can depend dramatically on its context. Over-
coming the obstacles mentioned above is not required when using
methods such as inter-subject correlation or independent-component
analysis (ICA).

We note that the inter-subject correlation method can only detect
responses that are shared across individuals. In some cases, there may
be subject-specific response, for example, due to differences in
knowledge or experience. In these cases, it may be preferable to com-
pute intra-subject correlations by comparing the BOLD timecourse
from different repetitions within the same subject.

We demonstrated the heterogeneity and context-sensitivity of
neural responses by studying responses to one specific class of stim-
uli, i.e. sentences that make up an auditory narrative. This demonstra-
tion will very likely generalize to any natural stimulus in which the
constituent elements maintain a meaningful relationship to one an-
other. Further experiments must determine whether other stimulus
classes (e.g. faces, objects, melodies) and cognitive processes
(e.g. memory consolidation and reasoning) are subject to the same
limitations. Finally, we note that the points made here are not limited
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to fMRI experiments, but apply equally to other neural signals, includ-
ing EEG waveforms and power spectral timecourses.

It is important to note that we do not claim inter-subject correla-
tion or ICA should replace event-related averaging. No method is
without flaws. In this study we simply demonstrate that there are
specific components of neural processing which may be invisible to
event-related averaging, but which can be detected robustly by ex-
amining temporal response profiles of individual events.
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