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J Neurophysiol 110: 2019-2026, 2013. First published August 7,
2013; doi:10.1152/jn.00268.2013.—We use functional magnetic res-
onance imaging (fMRI) to analyze neural responses to natural audi-
tory stimuli. We characterize the fMRI time series through the shape
of the voxel power spectrum and find that the timescales of neural
dynamics vary along a spatial gradient, with faster dynamics in early
auditory cortex and slower dynamics in higher order brain regions.
The timescale gradient is observed through the unsupervised cluster-
ing of the power spectra of individual brains, both in the presence and
absence of a stimulus, and is enhanced in the stimulus-locked com-
ponent that is shared across listeners. Moreover, intrinsically faster
dynamics occur in areas that respond preferentially to momentary
stimulus features, while the intrinsically slower dynamics occur in
areas that integrate stimulus information over longer timescales.
These observations connect the timescales of intrinsic neural dynam-
ics to the timescales of information processing, suggesting a temporal
organizing principle for neural computation across the cerebral cortex.

fMRI; natural addition; natural cognition; neural dynamics

TO SUCCESSFULLY PERCEIVE AND act within the natural world, we
must process sensory information and organize our behavior
over a wide range of timescales (Cole 1995; Dong and Atick
1995; Voss and Clarke 1975). In spoken language for example,
spectral features are composed into phonemes (tens of milli-
seconds), phonemes are connected into words (hundreds of
milliseconds), words into sentences (few seconds), and sen-
tences into paragraphs (tens of seconds) and paragraphs into
increasingly longer constructions. Neural dynamics with time-
scales across many orders of magnitude are also observed
across numerous recording methodologies, input stimuli, and
organisms (Baria et al. 2011; He et al. 2010; Honey et al. 2012;
Lerner et al. 2011; Linkenkaer-Hansen et al. 2001; Schneidman
et al. 2006). However, what is the relationship between the
timescales on which information unfolds in the world and the
timescales of the dynamics in neural systems?

Prior work using functional magnetic resonance imaging
(fMRI) and electocorticography (ECoG) suggests that brain
regions process information over different timescales and that
this processing is organized hierarchically (Hasson et al. 2008;
Honey et al. 2012; Lerner et al. 2011). Regions at lower levels
of the hierarchy integrate sensory information (e.g., word
acoustics) over short periods of time, while higher order
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regions integrate information (e.g., the meaning conveyed by a
set of sentences or paragraphs) over seconds and minutes.
These findings support a distributed and hierarchical model of
information integration, in which the temporal integration
capacity increases gradually from early to higher order areas.
An intriguing hypothesis is that the timescales of neural dy-
namics of a given brain area reflect the timescales on which
that region typically integrates information. If so, then neural
dynamics should vary according to a well-defined topographic
map as a function of the information processing timescales.

To map the timescale of neural dynamics, prior studies have
used fMRI and ECoG to measure the relative proportion of
slow (<0.1 Hz) and fast fluctuations of neural activity in
different regions. Differences in low-frequency content of the
blood oxygen level-dependent (BOLD) signal have been re-
ported across sets of predefined brain networks (He 2011; Wu
et al. 2008) as well as in the coupling between networks
(Salvador et al. 2008). The timescales of resting BOLD dy-
namics have also been explored at the voxel level (Baliki et al.
2011; Baria et al. 2011; Yan et al. 2009) with chronic pain
sufferers exhibiting unusually fast dynamics within medial
prefrontal, posterior cingulate, and lateral parietal cortices
(Baliki et al. 2011). However, these studies did not examine the
relationship between timescales of neural dynamics and the
timescales of information processing.

Using ECoG we recently explored the relationship between
timescales of neural dynamics and timescales of stimulus
dynamics within lateral portions of the left hemisphere of the
human cerebral cortex (Honey et al. 2012). Prior LFP studies
had demonstrated the neurophysiological reality of slow time-
scale fluctuations in neuronal activity (Leopold et al. 2003) and
EEG work had shown the relevance of slow fluctuations to
behavior (Monto et al. 2008). In our ECoG study we observed,
first, that higher order regions of the cerebral cortex contain
proportionally more slow fluctuations of neuronal activity than
early auditory and visual cortices. Second, we observed that
slow (<0.1 Hz) fluctuations of neuronal activity were reliably
modulated by an audiovisual movie. Finally, we observed that
the reproducibility of slow fluctuations in high-order areas was
reduced when the long timescale content of the stimulus was
disrupted by temporally scrambling the movie. These ECoG
data suggested a connection between slow neuronal population
dynamics and temporally coherent information structure over
long timescales (e.g., connected series of events within the
narrative).

While the high temporal resolution of ECoG allowed us to
precisely characterize the neural dynamics near each electrode,
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the sparse coverage of the electrode arrays precluded an un-
derstanding of the topography of neural dynamics across all
cortical areas. Here, we used fMRI to study neural dynamics
across the entire cortex and asked: /) whether a hierarchical
topography of neural dynamical timescales, ranging from fast
dynamic in sensory areas to slow dynamic in high-order areas,
can be seen using the BOLD signal; 2) whether this large-scale
topography is stable across conditions of rest and auditory
narrative processing; and 3) whether slower (faster) dynamics
correspond to an area accumulating information over longer
(shorter) timescales.

METHODS

Subjects. Nineteen subjects (ages 20-36 yr) participated in the
fMRI study. Eleven subjects were scanned while listening to the story
and eight subjects were scanned in the resting state condition. The
story data were used by Lerner et al. (2011) to characterize the
hierarchy of temporal receptive windows (TRW). In the current study,
we characterize the power spectrum of each voxel time series in the
same data set, and relate this spectrum to /) the spectrum observed in
a separate resting state data set and 2) TRW indices computed in the
same dataset. Conditions in which the head motion was >1 mm or in
which the BOLD signal was corrupted were discarded from the
analysis. Additional subjects were scanned till data from 11 subjects
were collected for each condition. All procedures were approved by
the Princeton University Committee on Activities Involving Human
Subjects, and all subjects had normal hearing and provided written
informed consent.

MRI acquisition. Subjects were scanned in a 3T head-only MRI
scanner (Allegra; Siemens, Erlangen, Germany). A custom radio
frequency coil was used for the structural scans (NM-011 transmit
head coil; Nova Medical, Wakefield, MA). For fMRI scans, 300
volumes were acquired using a T2*-weighted echo planar imaging
pulse sequence [repetition time (TR) = 1,500 ms; echo time (TE) =
30 ms; flip angle = 75°], each volume comprising 25 slices of 3-mm
thickness with 1-mm gap (in-plane resolution = 3 X 3 mm?). Slice
acquisition order was interleaved. In addition, a set of 160 TI-
weighted high-resolution (1 X 1 X 1 mm®) anatomical images of the
same orientation as the EPI slices were acquired for each subject with
a magnetization-prepared rapid-acquisition gradient echo (MP-RAGE)
pulse sequence (TR = 2,500 ms, TE = 4 ms, slice thickness = 1 mm, no
gap, in-plane resolution = 1 X 1 mm?, field of view = 256 mm?) and
used for cortical segmentation and three-dimensional (3D) reconstruc-
tion. To minimize head movement, subjects’ heads were stabilized with
foam padding. Stimuli were presented using Psychophysics toolbox.
MRI-compatible headphones (MR Confon; Magdeburg, Germany) were
fitted to provide considerable attenuation to the scanner noise and to
present the audio stimuli to the subjects.

Stimuli and experimental design. Stimuli for the experiment were
generated from a 7-min real life story (“Pie-man” told by Jim
O’Grady) recorded at a live storytelling performance (“The Moth”
storytelling event, New York City). Subjects listened to the story from
beginning to end (intact condition). In addition subjects listened to
scrambled versions of the story, which were generated by dividing the
original stimulus into segments of different timescales (paragraphs,
sentences, and words) and then permuting the order of these segments.

The timescale of neural dynamics is a property of an individual
brain region and can be measured in an individual subject on an
individual trial. We quantified the dynamical timescale by first calcu-
lating the power spectrum of the BOLD responses while subjects
listened to the intact story, and then averaging the spectra across
subjects.

By contrast, the information processing timescale was defined
through changes in the reliability of neural responses to different
scrambled stimuli. For example, a region would be said to have a long
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information processing timescale if it responded reliably when intact
paragraphs were presented but not when the word order was scram-
bled (see Lerner, et al, 2009).

To generate the scrambled stimuli, the story was segmented man-
ually by identifying the end points of each word, sentence, and
paragraph. Two adjacent short words were assigned to a single seg-
ment in cases where we could not separate them. Following segmen-
tation, the intact story was scrambled at three timescales: short:
“words” (W; 608 words, 0.7 £ 0.5 s each); intermediate: “sentences”
(S; 69 sentences, 7.7 = 3.5 s each); and long: “paragraphs” (P; 11
paragraphs, 38.1 = 17.6 s each). Laughter and applause were classi-
fied as single word events (4.4% of the words). Twelve seconds of
neutral music and 3 s of silence preceded and 15 s of silence followed
each playback in all conditions. These music and silence periods were
discarded from all analyses. A typical session comprised five runs,
each consisting of the presentation of one condition. Presentation
order was pseudorandomized across subjects. Attentive listening to
the story was confirmed using a simple questionnaire at the conclusion
of the experiment.

Regions of interest (ROIs) were defined based on the timescale of
information processing. This was done entirely using the responses to
the various scrambled stimuli. Subsequently, we characterized the
dynamical timescales of the neural responses within each ROI.
The dynamical timescales were measured based on the response to the
intact story (i.e., based on a dataset independent from that used to
define the ROIs).

Resting state data. Eight subjects (7 additional subjects and 1 subject
from the “Pieman” experiment) also participated in a separate scanning
session in which data were collected for 10 min while at rest (mixture of
eyes closed and eyes open). To assess the dynamical timescales in the
absence of stimulus-evoked responses, the timescales of neural dynamics
were also measured in the resting state condition, again via computation
of the power spectrum of the BOLD signal.

Data preprocessing. TMRI data were preprocessed with the Brain-
Voyager software package (Brain Innovation, version 1.8) and with
additional software written with MATLAB (The MathWorks, Natick,
MA). Preprocessing of functional scans included linear trend removal
and high-pass filtering (3 cycles per experiment). In all experiments,
this cutoff is longer than the window used to estimate the power
spectra. To correct for head motion, we used a 3D algorithm that
adjusts for small head movements by rigid body transformations of all
slices to the first reference volume. Detected head motions were <1
mm in size, which is well within the range of typical movements
observed in other imaging studies. All functional images were trans-
formed into a shared Talairach coordinate system so that correspond-
ing brain regions were roughly spatially aligned. To account for
inaccuracies in registration across subjects, the data were spatially
smoothed with a Gaussian filter of 6-mm full width at half-maximum
value.

Spectral analysis. BOLD time series from every voxel were nor-
malized to zero mean and unit variance to account for differences in
variance of nonneural origin (e.g., distance from head coil). In
addition, for each subject and each voxel, we used a best-fit linear
model to remove the spatial-mean brain dynamics. After subtraction
of the global mean, the voxel time series were renormalized to unit
variance. Since the variance is equal across all voxels, all spectra have
the same integrated area. The power spectra were estimated using
Welch’s method with a Tukey window (r) of width 100 s and 50%
overlap. The spectra were clustered using the k-means algorithm
employing a Euclidean metric and 20 replicates. Error bars throughout
the article denote bootstrap errors in the mean. The proportion of
low-frequency power was quantified through a = [3°*P(f)df, where
P(f) is the power estimated as above. We find similar results when
changing the number of clusters (*1) and the low-frequency cutoff by
*0.01 Hz. Power-law exponents were estimated by assuming P(f) =
¢f ® in the frequency range f.;, = 0.01 Hz and f,,. = 0.33 Hz.
Best-fit parameters were determined using nonlinear least squares
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with trust-region optimization. Errors in the exponents reflect 95%
confidence intervals.

Coherence analysis. For each voxel time series x(f), we com-
pute the coherence between x and its n — 1 subject average y() as

|| ()
ny(f) = T N A
P\ ) Pyy

the spectral density. We then average C,, across subjects and voxels
in each region. The coherence ranges between 0 and 1 and provides a
direct link between the frequency content of the dynamics and the
correlation across subjects.

TRW indices. To assess the timescale of processing for each brain
area, we first performed an intersubject correlation analysis. This
analysis provides a measure of the reliability of the responses to a
temporally complex stimulus, such as a story, by comparing the
BOLD response time courses across different subjects (intersubject
correlation; henceforth inter-SC). Inter-SC coefficients were calcu-
lated on a voxel-by-voxel basis (in Talairach space) within each
condition (backward, words, sentences, and paragraphs) by comparing
the responses across all listeners (inter-SC).

Atevery voxel, the Pearson product-moment correlation coefficient
py of subject k was computed as:

where p, is the cross spectral density and p,, is

R r(D) - (1)
k — k> -
[ - r][F0) - 7]

where r,(#) is the response time course of a voxel to the stimulus
presentation for a subject k, 7(t) = >,., r(t) is the response time
course averaged across all subjects except k, and r(¢)-7(¢) is the inner
product of r(r) and 7(r). Next, the average correlation p = Zp(r;, 7)

was computed at every voxel. Statistical significance of each lp value
was computed using a bootstrapping procedure (Lerner et al. 2011).
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Finally, to correct for multiple comparisons, we applied the Benja-
mini-Hochberg-Yekutieli false-discovery procedure that controls the
false discovery rate (FDR) under assumptions of dependence (Benja-
mini and Hochberg 1995; Benjamini and Yekutieli 2001).

To determine the timescale of processing in each brain area, we
used the inter-SC correlations across conditions (see Fig. 5A4). A voxel
was assigned the label “short TRW” (red), when it was significantly
coupled in all inter-SC maps (backward, words, sentences, and para-
graphs levels). A voxel was assigned the label “intermediate TRW”
when it was significantly coupled in all inter-SC maps, except back-
ward (yellow) or words and backward (green). A voxel was assigned
the label “long TRW” (blue) when it was significantly coupled only in
the paragraph scrambled inter-SC maps. Importantly, note that for the
calculation of the TRW indices we did not use the data from the intact
story; the intact story was separately used to assess the power
spectrum at each ROI or voxel. In addition we also calculated a
continuous TRW index (see Fig. 5B) as TRW index = (P siory —
Pworas)- Values close to 0 indicate that the voxel responded equally to
both the intact story and fine scrambled story; relatively large positive
values indicate that the responses are higher for the intact condition
than the word-scrambled condition.

RESULTS

When subjects listen to a 7-min real-life story, the timescales
of their neural dynamics exhibit a well-defined gradient along
the cortical surface. This gradient ranges from faster dynamics
in early sensory areas to the slower dynamics further along the
cortical hierarchy (Fig. 1). To quantify these dynamics we
compute the power spectrum for each brain area within each
listener and then average the power spectra across the ensem-
ble of listeners (n = 11). To provide an impression of the
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Fig. 1. Spatiotemporal patterning of neural dynamics across the brain. A: power spectrum in three illustrative brain regions [early auditory cortex (Al+),
temporoparietal junction (TPJ), and precuneus] and white matter, computed from 11 subjects listening to an audio story in the scanner. B: k-means clustering
with 5 clusters reveals a natural separation in the shapes of the power spectra across the brain. C: map of cluster identity restricted to significantly coupled brain
regions. D: gradient in timescales is also clearly visible in individual listeners. We characterize the shape of the power spectrum through the cumulative
low-frequency power o = [0°*P(f)df and we plot « for individual listeners in selected brain regions. Error bars in D and dotted lines in A denote SE in the mean
across the voxels in each region. PSD, postsynaptic density; mPFC, medial prefrontal cortex; IFG, inferior frontal gyrus; CS, cortical surface.

J Neurophysiol » doi:10.1152/jn.00268.2013 « www.jn.org



2022

power spectrum we first present the results from three illustra-
tive brain regions, with three different timescales of informa-
tion processing (as revealed in a previous study, Lerner et al.
2011): early auditory cortex (A1l+, fast information processing
timescale), temporoparietal junction (TPJ; intermediate infor-
mation processing timescale), and the precuneus (long infor-
mation processing timescale). The assessment of the timescales
of the neural dynamics (as measured by the power spectrum
analysis in these ROIs) was then followed by a comprehensive
voxel-wise calculation of dynamical timescales across the
whole brain.

The power spectra in these three ROIs show a clear shift in
the dynamics, with frequencies <0.1 Hz increasingly prevalent
from A1+ to the TPJ to the Precuneus (Fig. 1A). We note that
our assignment of (relative) neural dynamics timescales is based
on the broadband shape of the power spectrum and not on any
band-limited peaks in the power spectrum. Next, we measure the
dynamics within each brain area (voxel) and cluster the power
spectra using k-means with five clusters. We restrict the anal-
ysis to regions that respond reliably to the story across subjects
(inter-SC, FDR corrected g < 0.05, see METHODS). We find that
the cluster centers can be naturally ordered by the distribution
of their low-frequency content (Fig. 1B), and we show a brain
map of cluster identity (Fig. 1C). The timescale gradient pres-
ents a neural topography: early auditory areas exhibit faster
dynamics (red) and the dynamics become slower (yellow to
green to blue) as one moves along the posterior and anterior
superior temporal gyrus (see white dotted arrows in Fig. 1C),
with the slowest dynamics in the precuneus and medial pre-
frontal gyrus. Thus the analysis revealed a clear change in the
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broadband profile of the power spectrum, indicating a shift
across areas from faster to slower dynamics.

To characterize the proportion of low-frequency power in
each subject we calculate «, the cumulative power below a
fixed threshold of 0.04 Hz within each ROI for each subject.
We note that while each voxel has the same cumulative power
since the time series are normalized to unit variance, the
distribution of power across frequencies can still vary. The
same gradual gradient of neural dynamics is apparent for
individual listeners (Fig. 1D). Finally, the white matter and
ventricles display a nearly flat power spectrum (Fig. 1A, black
line) corresponding to unstructured white noise and suggesting
that spectral clustering methods can be used to filter such areas
at the preprocessing stage.

The varying topography of voxel power spectra is also
observed when we focus on those neural dynamics that are
locked to the stimulus (Fig. 2). When subjects listen to a story,
their BOLD dynamics can be decomposed into a ‘“noise”
component (from, e.g., instrumental, physiological and cogni-
tive variability) and a “signal” component (which is induced by
the stimulus). Averaging the responses across subjects in-
creases the relative magnitude of the shared signal component.
For each ROI we average across the listener ensemble and then
compute the power spectrum. Within a noisy brain area in
which the responses are uncorrelated across subjects, this
procedure would result in a flattened mean-listener spectrum.
In Fig. 2A we present the power spectra of the listener-
averaged dynamics using the same ROIs as in Fig. 1A. Within
these ROIs we find that the average spectrum is not flat, which
indicates that the responses contain a reliable component

0.8

& mean-listener power

0.04
a =/ P(f)df
0

0 08
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Fig. 2. Common brain dynamics across listeners exhibits accentuated low-frequency power. A: power spectrum of the mean-listener activity along the same
pathway as in Fig 1A. We average each voxel time series across different listeners, compute the power spectrum of the resulting mean signal, and then average
the spectra across voxels within each region. B: for each voxel, the cumulative low-frequency power in the mean listener is enhanced relative to the mean power
across listeners. Blue denotes significantly coupled voxels identified previously (Lerner et al. 2011). C: mean-listener « displayed across the brain. D: spectral
coherence among listeners exhibits increasing correlation in low-frequency bands.
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across subjects. Furthermore, the shift in power from fast to
slow dynamics across ROIs indicates that different temporal
aspects of the stimulus are driving the responses in each of the
ROIs. Note especially the enhancement of slow power in the
TPJ and precuneus.

The relative increase in low-frequency power, from early to
higher order areas, is more pronounced in the average dynam-
ics than for individual listeners (Fig. 2, B—D). This can be seen
on a voxel-by-voxel level, in which a preserves its relative
gradient, with a steeper (above the diagonal) increase in low-
frequency power for the average signal for areas with high
alpha relative to the mean power within individuals (Fig. 2B).
A marked topographic timescale map was also observed when
we cluster the neural dynamics of the average signal using the
same k-means procedure (Fig. 2C). The functional relevance of
low-frequency dynamics is underscored by a spectral coher-
ence analysis (see METHODS) that can identify the frequency
ranges within the power spectrum that are correlated across
subjects (Fig. 2D). While in early auditory areas, the coherence
was stronger at relatively higher frequencies (0.02-0.2 Hz), in
the TPJ and the precuneus the coherence was stronger at
frequencies below 0.02 Hz.

The timescales of neural dynamics retained their spatial
ordering during rest, as well as during three additional condi-
tions in which the story’s temporal structure was manipulated
(Fig. 3, Fig. 4, B and C). This suggests that the timescale
gradient reveals an intrinsic property of neural circuits, which
may be modulated, but not completely controlled, by environ-
mental stimuli. In Fig. 3, we plot the low-frequency content
measured while subjects were at rest and while they listened to
time-reversed, sentence-scrambled and paragraph-scrambled
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Fig. 3. Cumulative low-frequency power in the intact story is similar to the
resting state and to multiple stimulus conditions. We show scatter plots of the
low-frequency power « in the intact story and resting state (A), reversed speech
(B), scrambled sentences (C), and scrambled paragraphs (D) conditions. We
quantify the similarity with the correlation coefficient p and the error is
computed using bootstrap permutations among the voxels.
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versions of the intact story. The relative difference in the
proportion of low-frequency power was preserved across all
conditions at the voxel-by-voxel level. In addition, we ob-
served a slight increase in slow-frequency dynamic across all
voxels during the resting condition and during the reverse
speech condition compared with the intact audio story (i.e., the
points fall above the diagonal line).

A similar gradient of timescales was revealed when time-
scales were characterized via the slope of a power law fit to the
BOLD spectra. The power law exponent 3 gradually increases
from early auditory areas to high-order areas, and across the
k-means power clusters in both the story data (Fig. 4A) and the
resting data (Fig. 4B). Moreover, as with the cumulative power
matric, the exponent slopes seems to be preserved, on a
voxel-by-voxel basis, across the story and the resting data sets
(Fig. 4C). These findings may support recent suggestions of
scale-free neural dynamics in the human brain (He 2011; He et
al. 2010), although we note that BOLD data is not optimal for
distinguishing between scale-free activity and other dynamical
regimes.

The power spectrum gradient coincides with the TRWs
gradient found using scrambled auditory stimuli (Fig. 5), and
this suggests a functional link between the processing time-
scale of a region and its spectral dynamics characterization. In
previous work we assessed the timescale of processing within
each brain area by scrambling the same auditory story at the
level of words, sentences, and paragraphs (Lerner et al. 2011).
We found that early auditory areas responded reliably for all
scrambling levels while the reliability in higher brain areas
increased gradually in correspondence with the length of co-
herent temporal structures in the stimulus. By analogy with the
notion of a spatial receptive field, we defined the TRW of a
neural circuit as the length of time before a response during
which sensory information may affect that response (Lerner et
al. 2011). To directly connect the TRW indices to the voxel
dynamics we averaged the power spectra within short (red),
intermediate (yellow, green), and long (blue) TRW regions
(Fig. 5A). The results reveal a clear gradient: areas with short
TRWs (less sensitive to the scrambling level) have faster
dynamics, while areas with long TRWs (which accumulate
information over long timescales) have slower dynamics. A
similar correspondence between the region temporal receptive
window and proportional power was observed on a voxel-by-
voxel basis (Fig. 5B).

DISCUSSION

We have shown that human brain dynamics elicited by the
processing of natural auditory stimuli are remarkably struc-
tured, with faster timescales in early sensory areas and slower
dynamics in higher order regions. We find a similar temporal
gradient under resting state conditions within the scanner, and
this pattern is enhanced by the common, synchronized dynam-
ics of complex experience. The neural timescale gradient
(defined by the voxel power spectrum) correlates with the
temporal receptive window gradient (defined by the reliability
of neural response as a function of stimulus structure). These
data therefore connect the time-varying structure of the stim-
ulus to intrinsic neural dynamics and suggest a large-scale
organizing principle in which cortical areas that accumulate
information over longer timescales exhibit a larger fraction of
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Fig. 4. Power-law exponents of the spectral clusters also display the timescale gradient. A: normalized power spectrum plotted in a log-log plot for each of the
k-means power clusters in the intact story. We fit each spectrum to a power-law function between f,;, = 0.01 Hz and f,,,, = 0.33 Hz and the values for the
exponent (3 appear below the plot, ordered from lower « values (lef) to higher a-values (right). B: similar analysis performed on the resting state data. C: for

each voxel, the power-law exponent in resting state vs. the intact story.

low-frequency dynamics. Indeed, theoretical work (Friston
2009; Jaaskelainen et al. 2011; Wiskott and Sejnowski 2002)
has argued that invariances on increasingly long timescales
may support invariant object recognition (Berkes and Wiskott
2005) and that hierarchical coupling of neural dynamics may
underlie prediction and perception across multiple timescales
(Kiebel et al. 2008).

What is the origin of the differences in dynamics among
regions? One possibility is that the differences in timescales
reflect differences in intraregional properties such as local
recurrent wiring (Brody et al. 2003; Durstewitz et al. 2000),
membrane excitability (Marom 1998) and varieties of short-
term synaptic plasticity (Zucker and Regehr 2002). A second
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Fig. 5. Timescale gradient in the voxel power spectrum parallels the map of
temporal receptive windows found using scrambled auditory stimuli (Hasson
et al. 2008; Lerner et al. 2011). A: voxel power spectra averaged within
temporal receptive windows (TRW) categories. TRW categories with longer
time windows are associated with an increased proportion of low-frequency
power in the voxel dynamics. B: scatter plot of a vs. the TRW index (a
continuous measure of the TRW category). The correlation between « and the
TRW index is p = 0.47 £ 0.01, where the error is computed using bootstrap
among the population of voxels.

possibility is that the dynamical differences originate at the
level of inter-regional connectivity (see, e.g., Salvador et al.
2008; Wu et al. 2008). In particular, if individual regions in the
processing hierarchy act as low-pass filters on their inputs, then
higher order regions would exhibit slower dynamics because
they receive input signals that have already passed through
more filtering stages (Baria et al. 2013). A third potential origin
of slow cortical dynamics is via slow subcortical modulation.
While we cannot settle the issue here, it is likely that both
region-specific and large-scale network influences contribute to
the variation of timescales across regions.

Our analysis reveals a robust spatial organization of the
timescales of regional BOLD dynamics, both at rest and across
multiple stimulation conditions (Fig. 3). Moreover, in agree-
ment with other studies (Baria et al. 2011; He et al. 2010), we
observed a global increase in low-frequency power relative to
the intact story (i.e., substantially more dots lie above the
diagonal line) during rest. Interestingly, a similar global in-
crease was observed during the reverse story condition. This is
of particular interest, given that the spectrum of the audio
envelope is unchanged when the stimulus is played in reverse.
Based on that, we conclude that the global increase in low-
frequency power can be dissociated from the low-level char-
acteristics of the stimulus power spectrum (which is identical
in the intact and reverse conditions). Rather, the BOLD dy-
namical timescales are more related to the presence or absence
of meaningful input across the intact, rest, or/and reverse
speech conditions.

Along the auditory pathway our results are consistent with
the processing of sequentially longer timescales by networks
with slower dynamics. However, we cannot currently general-
ize our findings to the visual cortex, as it was shown that early
visual areas generally display more low-frequency content than
high-order ventral (though not dorsal) visual areas (Baria et al.
2011; He et al. 2010). It is unclear whether the audio and visual
discrepancies arise from functional differences between the
two sensory pathways or from other factors such as hemody-
namic-respiratory coupling (Birn et al. 2006). This discrepancy
between auditory and visual sensory pathways is an important
issue for future investigation.

Consistent with prior studies (Baria et al. 2013), we find that
the very slowest neural dynamics are not seen in the frontal
cortex but in the vicinity of the angular gyrus and the precu-
neus. The finding that lateral frontal areas exhibit mostly
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intermediate or slow dynamics is consistent with their role in
the comprehension and production of sentences (Hickok and
Poeppel 2004) and in working memory and executive control
functions (Baddeley et al. 1996). The finding that the slowest
dynamics are in precuneus and angular gyrus is consistent with
their role as cortical network hubs (Baria et al. 2013; Hagmann
et al. 2008) and in episodic memory (Andrews-Hanna et al.
2010; Ranganath and Ritchey 2012).

The results reveal for the first time that differences in the
neural dynamic across brain areas can be linked to differences
in the information processing timescale (Fig. 5). First, the
neural dynamic gradient is preserved even in the absence of
stimuli (Fig. 3), suggesting that it is an intrinsic property of the
neural circuits. Second, the neural response dynamics align
with the stimulus dynamics. While areas with fast dynamic
(e.g., early auditory areas) are coupled to rapidly varying
stimulus dynamic (e.g., single phonemes or words), areas with
mid-range dynamic (such as posterior STS and inferior frontal
gyrus) are coupled to the intermediate stimulus temporal struc-
ture (e.g., the structure of sentences), and areas with the
slowest dynamics (e.g., precuneus and medial prefrontal cor-
tex) are coupled to the slowly varying stimulus dynamic (e.g.,
stimulus narrative; Honey et al. 2012; Kauppi et al. 2010;
Lerner et al. 2011). Furthermore, when the temporal structure
of the stimulus is disrupted via scrambling, this interferes with
the alignment of neural dynamics to the stimulus structure in
areas with long processing timescale (Honey et al. 2012).
Together, these results suggest that areas with faster neural
dynamic accumulate information over short timescales, while
areas with slower neural dynamic accumulate information over
longer timescales.

Finally, we note that neural dynamics appear heavy tailed in
their high frequencies, consistent with claims of critical and
scale-free dynamics (Chialvo 2010) based on in vitro field
experiments (Friedman et al. 2012) as well as fMRI (Aguirre et
al. 1997; Expert et al. 2011; He 2011) and ECoG (Solovey et
al. 2012) measurements in humans. Here, we too observe
heavy tails in the power spectra, Fig. 4. However, our results
also suggest that there exists a systematic diversity in the
neural dynamics (and thus the power exponents) among dif-
ferent brain networks and that this diversity tracks the diverse
demands of real-world information processing (see also He
2011).

To conclude, the present study revealed a functional link
between the multiple timescales of neural dynamics and the
multiple timescales of real-world information accumulation.
The circuit level mechanisms underlying neural and cognitive
timescale diversity should be the focus of future studies.
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