
Behavioral/Cognitive

Representation of Real-World Event Schemas during
Narrative Perception

X Christopher Baldassano, X Uri Hasson, and X Kenneth A. Norman
Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey 08544

Understanding movies and stories requires maintaining a high-level situation model that abstracts away from perceptual details to
describe the location, characters, actions, and causal relationships of the currently unfolding event. These models are built not only from
information present in the current narrative, but also from prior knowledge about schematic event scripts, which describe typical event
sequences encountered throughout a lifetime. We analyzed fMRI data from 44 human subjects (male and female) presented with 16
three-minute stories, consisting of four schematic events drawn from two different scripts (eating at a restaurant or going through the
airport). Aside from this shared script structure, the stories varied widely in terms of their characters and storylines, and were presented
in two highly dissimilar formats (audiovisual clips or spoken narration). One group was presented with the stories in an intact temporal
sequence, while a separate control group was presented with the same events in scrambled order. Regions including the posterior medial
cortex, medial prefrontal cortex (mPFC), and superior frontal gyrus exhibited schematic event patterns that generalized across stories,
subjects, and modalities. Patterns in mPFC were also sensitive to overall script structure, with temporally scrambled events evoking
weaker schematic representations. Using a Hidden Markov Model, patterns in these regions predicted the script (restaurant vs airport) of
unlabeled data with high accuracy and were used to temporally align multiple stories with a shared script. These results extend work on
the perception of controlled, artificial schemas in human and animal experiments to naturalistic perception of complex narratives.
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Introduction
Everyday perception involves processing and reacting to a rich,
rapidly changing stream of sensory information. A large body of
work in cognitive psychology has shown that “common sense”
comprehension requires not just bottom-up feature recognition,
but also activation of knowledge schemas about the expected

structure of the world (Piaget, 1926; Bartlett, 1932; Zacks et al.,
2007).

Numerous recent studies, in both humans and animals, have
explored how schemas are stored in the brain and how they in-
fluence ongoing processing. A critical region implicated in many
of these studies is the medial prefrontal cortex (mPFC). This
region shows encoding-related activity predictive of subsequent
memory for schema-congruent stimuli (van Kesteren et al.,
2013), increased activity when remembering schematic knowl-
edge (Brod et al., 2015), representations of temporal position
within a schematic sequence (Hsieh and Ranganath, 2015), and
upregulation of intermediate early gene expression when assimi-
lating new information into a schema (Tse et al., 2011), with dam-
age to the mPFC resulting in deficits for schema-related
processing (Ghosh et al., 2014; Spalding et al., 2015). The mPFC
is thought to mediate schematic activation in a network of re-
gions, including the hippocampus (van Kesteren et al., 2010,
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Significance Statement

In almost all situations we encounter in our daily lives, we are able to draw on our schematic knowledge about what typically
happens in the world to better perceive and mentally represent our ongoing experiences. In contrast to previous studies that
investigated schematic cognition using simple, artificial associations, we measured brain activity from subjects watching movies
and listening to stories depicting restaurant or airport experiences. Our results reveal a network of brain regions that is sensitive
to the shared temporal structure of these naturalistic situations. These regions abstract away from the particular details of each
story, activating a representation of the general type of situation being perceived.
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2012; Robin and Moscovitch, 2017) and cortical regions, such as
posterior cingulate and angular gyrus (Gilboa and Marlatte,
2017).

However, the connection between this work and real-world
perception has been lacking. The vast majority of these neurosci-
entific studies of schema have used simple, arbitrary relation-
ships, such as flavor-place associations (Tse et al., 2007, 2011) or
associations between artificial stimuli (Brod et al., 2015, 2016). In
naturalistic situations, we make use of highly elaborated schemas
that have been learned and consolidated throughout our life-
times, which may or may not rely on the same neural mechanisms
as novel schemas involving simple relational binding. Also, many
of these studies only compare schematic versus nonschematic
conditions, making it unclear whether these regions actually rep-
resent information about which schema is active, or are engaged
when any schema is active (regardless of content).

In this study, we examine a specific type of naturalistic tem-
poral schema, called a “script.” Schank and Abelson (1977) de-
scribed a script as “a predetermined, stereotyped sequence of
actions that defines a well-known situation,” and proposed that
“most of understanding is script-based.” This central role of
scripts was echoed by Mandler (1984), who proposed that scripts
“are intimately involved in most of our daily processing, and an
understanding of their structure and how it is used would add
materially to our understanding of how the mind works.” These
theoretical proposals were followed by empirical studies of the
contents and consistency of scripts across people, which found
that subjects largely agreed on how to segment activities into
events as well as the typical “characters, props, actions, and the
order of the actions” (Bower et al., 1979).

Using complex movies and audio narratives, we presented
subjects with stories conforming to two different scripts that are
highly familiar to our subject population: eating at a restaurant
and going through the airport. The stories within each script all
shared the same high-level sequence of events (e.g., entering the
restaurant, being seated, ordering, and eating food) but were
highly dissimilar in terms of their low-level features (spoken words
vs audiovisual movies), genres (e.g., science fiction vs thriller), char-
acters, emotional content, and relative lengths of each of the con-
stituent events. Using multiple converging analyses, we found
that default mode regions, especially posterior medial cortex
(PMC), mPFC, and superior frontal gyrus (SFG), exhibited se-
quences of activity patterns that were specific to each of the two
scripts. These schema-specific event representations generalized

across stories, across subjects, and across modalities, and were
robust enough to be detected in held-out stories even without
manual labeling of the events. Additionally, a separate control
experiment showed that presenting events in scrambled order
disrupted schematic effects in mPFC, providing evidence that
this region is sensitive to the overall temporal structure of famil-
iar scripts.

Materials and Methods
Subject details. We collected data from a total of 45 subjects (22 female,
age 18 –38 years): 32 for the main experiment and 13 for the control
experiment (described below). Subjects were native English speakers, in
good health, and with normal or corrected-to-normal vision. The exper-
imental protocol was approved by the Institutional Review Board of
Princeton University, and all subjects gave their written informed con-
sent. To detect outlier subjects, each subject’s average posterior medial
cortex time course (as defined below) across all stimuli was correlated
with the mean time course of all other subjects (within the same experi-
ment), to ensure that the subject had attended to and understood the
narrative (Stephens et al., 2010). One subject in the main experiment was
excluded due to a correlation value that was �2.5 SDs below the rest of
the group (r � 0.15).

Stimuli. The stimuli were designed to conform to two naturalistic
schematic scripts that we expected to be familiar to all our subjects: eating
at a restaurant or catching a flight at an airport. Each scenario consisted of
four events. For the restaurant stories, the events were as follows: entering
and being taken to a table, sitting with menus, ordering food and waiting
for its arrival, and food arriving and being eaten. For the airport stories,
the events were as follows: entering the airport, going through the secu-
rity checkpoint, walking to and waiting at the gate, and getting onboard
the airplane and sitting in a seat.

Each story was �3 min long (Fig. 1). To identify schema representa-
tions that were modality-invariant, we presented 4 audio-visual movies
and 4 spoken narratives for each of the two schemas. The stories all
involved different characters and spanned multiple genres, sharing only
the same high-level schematic script. The movies were sampled from
films in which the restaurant schema was depicted (Brazil, Derek, Mr.
Bean, Pulp Fiction) or the airport schema was depicted (Due Date, Good
Luck Chuck, Knight and Day, Non-stop), and were edited for time and to
conform as closely as possible to the four-stage schema script. The audio
narratives were adapted from film scripts with a restaurant scene (The Big
Bang Theory, The Santa Clause, Shame, My Cousin Vinny) or an airport
scene (Friends, How I Met Your Mother, Seinfeld, Up in the Air), also
edited for length and to match the schematic script. All narratives were
read by the same professional actor.

To generate scrambled versions of the stimuli, each story was divided
into its 4 schematic events, and then these clips were concatenated to

Figure 1. Experimental stimuli. Subjects were presented with 16 narrative stimuli: half audiovisual movies (clips from movies) and half audio narratives (based on movie scripts, all read by the
same voice actor). The narratives varied widely but conformed to one of two schemas: eating at a restaurant (entering the restaurant, being seated at a table, ordering food from a menu, and eating
the food when it arrives) or going on a flight (entering the airport, going through security, waiting at the boarding gate, and taking a seat on the plane). The timing of these schematic events differed
across stories, but all stories were �3 min long.
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create 16 new scrambled stimuli. Like the original stories, each of these
scrambled stimuli contained all 4 schematic events from one schema and
consisted of clips from a single modality (audio or audiovisual). Unlike
the original stories, the schematic events in these clips were presented out
of order and were drawn from 4 different stories. Eight different “highly
scrambled” permutations of 4 subevents (for which no two neighboring
events were in the correct sequence, and at most 1 event was in the correct
position in the sequence) were used for the 8 stories within each schema,
as described in Table 1.

All stimuli are publicly available at https://figshare.com/articles/
Event_Schema_Stimuli/5760306/3.

Data were collected on a 3T Siemens Prisma scanner with a 64-channel
head/neck coil. Functional images were obtained with an interleaved
multiband EPI sequence (TE � 39 ms, flip angle � 50°, multislice fac-
tor � 4, multislice shift � 3, FOV � 192 mm � 192 mm, partial Fou-
rier � 6/8, 60 oblique axial slices), resulting in a voxel size of 2.0 mm
isotropic and a TR of 1.5 s. The sequences used for the main experiment
and scrambled control experiment were not identical (due to a sequence
incompatibility caused by a scanner software upgrade) but had exactly
the same parameters, except for a slightly different echo spacing (0.93 ms
in the main experiment, 0.78 ms in the control experiment). Whole-
brain high-resolution (1.0 mm isotropic) T1-weighted structural mages
were acquired with an MPRAGE sequence, and field maps were collected
for dewarping (40 oblique axial slices, 3.0 mm isotropic).

Data for both experiments are available in BIDS format at http://www.
doi.org/10.18112/openneuro.ds001510.v1.0.1 and http://www.doi.org/
10.18112/openneuro.ds001511.v1.0.1.

Cortical surface extraction was performed on the anatomical image,
using FreeSurfer 5.3. The Freesurfer epidewarp.fsl script was used to
compute a voxel shift map to account for B0 distortion. The FreeSurfer
Functional Analysis Stream (FsFast) was used to preprocess the fMRI
data (alignment to the anatomy, motion, and B0 correction, resampling
to fsaverage6 cortical surface and subcortical MNI volume, 4 mm
smoothing). The resampled data (time courses on the left and right
hemispheres, and in the subcortical volume) were then read by a custom
python script, which implemented the following preprocessing steps:
removal of nuisance regressors (the 6 degrees of freedom motion correc-
tion estimates, and low-order Legendre drift polynomials up to order
[1 � duration/150] as in Analysis of Functional NeuroImages [AFNI])
(Cox, 1996), z scoring each run to have zero mean and SD of 1, and
dividing the runs into the portions corresponding to each stimulus.

All subsequent analyses, described below, were performed using cus-
tom python scripts and the Brain Imaging Analysis Kit (http://brainiak.
org/). All ROI results can be fully reproduced online by using the pub-
lished Code Ocean capsule (https://doi.org/10.24433/CO.a27d1d90-
d227-4600-b876-051a801c7c20.v3), which contains the python analysis
code, preprocessed ROI data, and computational environment used for

generating the results. The analysis code is also available on GitHub
(https://github.com/cbaldassano/Schema-Perception).

ROI and searchlight definition. Based on prior work on the representa-
tion of high-level, cross-modal situation models (Zadbood et al., 2017),
we focused our analysis primarily on regions within the default mode
network. We derived these regions from an established network atlas on
the fsaverage6 surface (Yeo et al., 2011), by selecting the networks from
their 17-network parcellation (Networks 15, 16, and 17) that made up the
full default mode network (Buckner et al., 2008) and then merging par-
cels that were spatially contiguous. This yielded six ROIs: angular gyrus
(1868 vertices), superior temporal sulcus (STS, 2118 vertices), SFG (2461
vertices), mPFC (2069 vertices), parahippocampal cortex (PHC, 882 ver-
tices), and PMC (2495 vertices). Additionally, we used the freesurfer
subcortical parcellation to extract the hippocampus as a ROI (Hipp, 1289
voxels).

As a control region, we also defined an auditory cortex region based on
correlations with the audio envelope of the stimuli. For every story (both
movies and narratives), the root mean square amplitude of the audio
signal was computed for every second of the stimulus. This was then
convolved with a standard HRF (Cox, 1996) and downsampled to the
temporal resolution of the fMRI signal. All audio envelopes were concat-
enated and then correlated with the concatenated timeseries from all
stories at each surface vertex. The highest correlations were in the vicinity
of Heschl’s gyrus, as expected, and an auditory cortex region was defined
as all vertices with r � 0.27 to yield an ROI of comparable size to the other
regions (1589 vertices).

Searchlight ROIs with a radius of �15 mm were generated by ran-
domly sampling a center vertex and then identifying all vertices within 11
steps of the center vertex along the surface mesh (because the vertex
spacing of the fsaverage6 mesh is �1.4 mm, yielding a radius of 11 � 1.4
mm � 15 mm). Vertices without data (e.g., along the medial wall) were
removed. Searchlights were randomly selected in this way until every
vertex had been included in at least 3 searchlights.

For each ROI or each searchlight, data were aligned across subjects
using the Shared Response Model (SRM) (P. H. Chen et al., 2015). The
goal of SRM is to project all subjects’ data into a common, low-
dimensional feature space, such that corresponding time points from the
same story are close together in this space. Given time by voxel data
matrices Di from every subject, SRM finds a voxel by feature transforma-
tion matrix Ti for every subject such that Di � Ti � S, where S is the
feature time courses shared across all subjects. We use data from all
stories to estimate these transformation matrices, projecting all time
courses into a 100-dimensional space. This projection will inflate the
intersubject similarity for each story across subjects (because the trans-
formations are chosen to maximize the similarity between corresponding
time points), but will not artificially create similarity between stories, and
does not use any information about the schema type of the stories.

Experimental design and statistical analysis. After listening to a short
unrelated audio clip to verify that the volume level was set correctly,
subjects were presented with four stories in each of four experimental
runs, using PsychoPy (RRID:SCR_006571) (Peirce, 2007). Each run con-
sisted of interleaved video and audio stories, with one story from each
modality and schema in each run, and a randomized run order across
subjects. Every story was preceded by a 5 s black screen followed by a 5 s
countdown video. The title of each story was displayed at the top of the
screen throughout the story (the screen was otherwise black for the audio
narratives). Subjects were informed that they would be asked to freely
recall the stories after all 16 had been presented (the recall data is not
analyzed in this paper).

Statistics for all analyses were computed using nonparametric permu-
tation and bootstrap techniques, as described in the sections below.

Event pattern correlation analysis. First, the 31 subjects in the main
experiment were randomly divided into two groups (of 15 and 16 sub-
jects). For each story, four regressors were created to model the response
to the four schematic events, along with an additional nuisance regressor
to model the initial countdown video. These were created by taking the
blocks of time corresponding to these five segments and then convolving
with the HRF from AFNI (Cox, 1996). A separate linear regression was
performed to fit the average response of each group (in the 100-

Table 1. Construction of scrambled stimulia

Schema Modality Clip 1 Clip 2 Clip 3 Clip 4

Restaurant Audiovisual Pulp Fiction (2) Brazil (1) Derek (4) Mr. Bean (3)
Brazil (2) Mr. Bean (4) Pulp Fiction (3) Derek (1)
Derek (3) Mr. Bean (2) Brazil (4) Pulp Fiction (1)
Pulp Fiction (4) Derek (2) Mr. Bean (1) Brazil (3)

Audio Santa Clause (2) Shame (4) Big Bang (1) Vinny (3)
Shame (3) Vinny (1) Santa Clause (4) Big Bang (2)
Vinny (4) Santa Clause (1) Big Bang (3) Shame (2)
Big Bang (4) Santa Clause (3) Vinny (2) Shame (1)

Airport Audiovisual Non-stop (2) Good Luck (4) Knight (1) Due Date (3)
Good Luck (3) Due Date (1) Non-stop (4) Knight (2)
Due Date (4) Non-stop (1) Knight (3) Good Luck (2)
Knight (4) Non-stop (3) Due Date (2) Good Luck (1)

Audio Up in the Air (2) Friends (1) How I Met (4) Seinfeld (3)
Friends (2) Seinfeld (4) Up in the Air (3) How I Met (1)
How I Met (3) Seinfeld (2) Friends (4) Up in the Air (1)
Up in the Air (4) How I Met (2) Seinfeld (1) Friends (3)

aTo test the effect of disrupting the overall temporal and narrative structure of the schematic events, we recombined
the event clips of the same schema and modality into new, scrambled stimuli. Each of the 16 rows of the table lists
the four clips that made up each of the 16 scrambled stimuli, with the original event number of the clips indicated in
parentheses.
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dimensional SRM space) using the regressors, resulting in a 100-
dimensional pattern of coefficients for each event of each story in each
group. For every pair of stories, the pattern vectors for each of their
corresponding events were correlated across groups (event 1 from Group
1 with event 1 from Group 2, event 2 from Group 1 with event 2 from
Group 2, etc., as shown in Fig. 2a) and the four resulting correlations
were averaged. This yielded a 16 � 16 matrix of across-group story event
similarity. To ensure robustness, the whole process was repeated for 10
random splits of the 31 subjects, and the resulting similarity matrices
were averaged across splits. For comparison, the same analysis was also
performed without breaking the story into four segments (i.e., simply
treating each story as a single event).

We then computed the average story similarity for pairs of different
stories from the same schema versus pairs of different stories from dif-
ferent schemas. To determine whether this difference was statistically
significant, we randomly permuted the schema labels of the stories to
generate a null distribution, and converted the true difference into a
z value relative to this null distribution (yielding a corresponding p value
from the survival function of the normal distribution). Additionally, we
computed a more restrictive version in which only pairs of stories from
opposite modalities (movie and audio narration) were considered, to
ensure that schematic similarity was not driven by modality-specific
features. A corresponding null distribution was generated similarly by
shuffling the schema labels of the stories (but keeping the modality

labels intact). This analysis was applied within each of the ROIs and
searchlights.

To explore the dimensionality of the schematic patterns, we reran the
analysis after preprocessing the data with a range of different SRM di-
mensions, from 2 to 100. The resulting curve of z values versus dimen-
sionality for each region was then smoothed with the LOWESS (Locally
Weighted Scatterplot Smoothing) algorithm implemented in the
statsmodels python package (using the default parameters).

To generate the searchlight map, a z value was computed for each
vertex as the average of the z values from all searchlights that included
that vertex. The map of z values was then converted into map of q values
using the same false discovery rate correction that is used in AFNI (Cox,
1996).

To visualize the spatial patterns, the participants were randomly split
into two groups and a mean time course for each story was computed in
each group. A regressor was created to model the response to all instances
of each of the 8 schematic event types (across all stories), which were
convolved with a HRF and fit to each group’s data with a GLM, as above
(including the nuisance regressor to model the initial countdown video).
Each resulting spatial pattern of coefficients was then z-scored and dis-
played on the cortical surface (masked to include only vertices that ex-
hibited a significant schema effect in the searchlight analysis).

To determine the impact of scrambling the stimulus clips on the
schema effect, we performed the same pattern correlation analysis de-

Figure 2. Event pattern correlations between stories. a, For each pair of stories, we compute the mean pattern correlation (in a ROI) between the 4 corresponding events. We then binned these
correlations depending on whether the two stories were drawn from the same schema or different schemas. b, We found that, throughout the default mode network, stories from the same schema
showed significantly higher event similarity compared with stories from different schemas. This result was not driven solely by modality-specific stimulus features because it appears even when
considering only pairs of stories from different modalities (audiovisual movie and audio narrative). Auditory regions were not strongly related to high-level schemas, despite the presence of audio
information in all stories. Surface map thresholded at FDR � 0.05. *p � 0.05; **p � 0.01; by permutation test.
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scribed above, but in addition to correlating patterns between the two
groups of subjects in the main (intact story) experiment, we also com-
puted correlations between one of the intact groups and the scrambled
control group. SRM cannot be applied here (because the stimuli pre-
sented to the two groups are different), and so these analyses were con-
ducted in the native vertex space. For assessing a statistically significant
difference between the intact-intact and intact-scrambled correlations,
the difference in schema effects in the two conditions (within-schema
correlations minus across-schema correlations) was compared with a
null distribution computed using the same permutation procedure de-
scribed above.

Schema classification analysis. An alternative analysis for detecting
schematic structure was also performed to determine whether the
schema type of novel stories could be decoded from fMRI data within an
ROI, even when the novel stories have not been subdivided by hand into
four events. The goal of this analysis was to use a labeled set of training
stories to create a library of what each of the two schematic event se-
quences looked like on average (and measure how variable those patterns
were across stories). Then, given held-out data from a new testing story,
we attempted to divide that story’s time course into 4 events that looked
like one of the 4-event sequences from our schematic event library. To
perform this type of analysis in a principled way, we used a latent variable
model in which every time point of the testing story belongs to some
(unknown) event, and later time points must belong to later events than
earlier time points.

Specifically, we used the Hidden Markov Model (HMM) variant in-
troduced in Baldassano et al. (2017). This model assumes that activity
patterns in a region proceed through a sequence of discrete latent states
(starting with the first event and ending in the last event), and that within
each event activity patterns are distributed in a Gaussian fashion around
a mean event pattern. Given unlabeled timeseries data from a new story
and a library of possible event sequences, we can infer the probability that
each time point belongs to each of the schematic events.

Labels from 7 of the 8 stories from each schema (the training set) were
used to construct regressors for each of the 8 schematic event types, and
then estimate a characteristic pattern for each event type using a GLM (as
in the visualization analysis above). We then measured the variance
around these characteristic patterns within the corresponding events in
the training stories. These mean and variance parameters were used to
instantiate two HMMs: one loaded with the event patterns correspond-
ing to the restaurant schema and the other with patterns from the airport
schema. Each of the two HMMs was fit to each of the two held-out stories
(one from each schema). This resulted in a (probabilistic) segmentation
of the story into four events that matched the four corresponding events
of the HMM as closely as possible. To evaluate the goodness of fit be-
tween the HMM and this story segmentation, we computed the four
average patterns for the story time points assigned to each event and
compared them with the four characteristic HMM patterns by measuring
the difference in mean correlation between corresponding and noncor-
responding events. If the story is well modeled by the HMM, the fitting
procedure will be able to find four events (in the correct order) whose
average spatial pattern is very similar to the four characteristic patterns in
the HMM. Therefore, we attempted to classify which of the held-out
stories came from which schema, based on which alignment of HMMs to
stories provided a higher average match value.

The analysis described above was repeated for all possible choices of
the two held-out stories. To obtain CIs, we performed bootstrap sam-
pling over subjects to produce 100 resampled datasets and ran the full
analysis on each bootstrap sample. To keep data from different subjects
independent (as is required for bootstrap sampling), we performed the
fitting of the SRM after resampling.

To ensure that our classification performance was not biased by using
training and testing data from the same run, we also ran an alternative
version of this analysis in which the stories from 3 of the 4 runs were used
as training data, and then the learned models were used to classify pairs of
opposite-schema stories in the held-out run.

Unsupervised alignment analysis. Finally, we sought to investigate
whether the response to schematically related narratives was consistent
enough to automatically identify related events across stories, without

relying on any human annotations. In contrast to the classification anal-
ysis above, fitting the HMM in this scenario requires not only inferring a
(probabilistic) segmentation of each story into a series of shared events,
but also estimating the shared event patterns themselves. This is accom-
plished by alternating between estimating the event patterns and infer-
ring story segmentations until convergence, as described previously
(Baldassano et al., 2017). The model therefore enforces that all stories
must exhibit the same set of event patterns in the same order, but allows
the durations of the events to vary across stories. The number of latent
events used (a hyperparameter of the HMM) was varied from 2 to 6 in
steps of 1.

We then compared this model-predicted alignment to the hand-
annotated event labels (defined as the maximum regressor of the event
regressors described above). For any two stories, we found the set of pairs
of time points (one from each story) that were predicted to be from the
same event in the model (assigning each time point to its most probable
event), and compared it with the set of time point pairs that had the same
hand-annotated event label. We computed the intersection over union
(the number of pairs in both sets divided by the number of pairs in either
set) as a measure of how well the model correspondence matched the
annotation correspondence. This similarity measure was averaged over
all pairs of stories within a schema and results for both schemas were
averaged. We generated a null distribution by replacing the model-
defined event segmentation with a random segmentation, in which the
event boundary time points were uniformly sampled from the set of all
time points (without replacement), and performing the same analysis.

Results
Our goal was to identify brain regions that represent the structure
of real-life event schemas (e.g., eating at a restaurant) as they
unfold over time (e.g., entering the restaurant, being seated, or-
dering, and eating food), regardless of their low-level features,
genres, characters, emotional content, and relative lengths of
each of the constituent events. We therefore compared the activ-
ity patterns evoked by the schematic events of a story with those
evoked by all other stories. We hypothesized that regions with
schematic representations should show similarity between corre-
sponding events of different stories with a shared schema but not
stories with different schemas (Fig. 2a).

Using both an ROI analysis and a searchlight analysis, we found
robust within-versus-between schema differences throughout the
default mode network (Fig. 2b), including the angular gyrus (p �
0.009), STS (p � 0.010), SFG (p � 0.001), mPFC (p � 0.001),
PHC (p � 0.005), and PMC (p � 0.001). A borderline difference
was also present in the hippocampus (p � 0.066), and there was
no significant difference in auditory cortex (p � 0.137). The
effect in auditory cortex was significantly smaller than that in
angular gyrus (p � 0.025), STS (p � 0.043), mPFC (p � 0.009),
PHC (p � 0.023), and PMC (p � 0.002).

A more stringent requirement of schematic representation is
that it should generalize across modalities. To test whether these
effects were being driven solely by within-modality similarities
(e.g., evoked by the visual objects or words associated with the
schematic events), we repeated the same analysis but restricted
our comparisons to pairs of stories from different modalities
(e.g., a spoken narration of a restaurant scene vs a movie clip of a
restaurant scene). The pattern of significant effects was the same,
including the angular gyrus (p � 0.006), STS (p � 0.030), SFG
(p � 0.001), mPFC (p � 0.005), PHC (p � 0.003), and PMC
(p � 0.002), with nonsignificant effects in the hippocampus (p �
0.073) and auditory cortex (p � 0.100). The searchlight analyses
(performed both with all story pairs and with only across-
modality story pairs) confirmed that the strongest effects oc-
curred in these default mode ROIs, with weaker effects also
evident in lateral prefrontal cortex and the insula.
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To further explore the properties of the
schematic spatial patterns driving these
results, we repeated our analyses after
projecting subjects’ data to a lower-
dimensional shared space (Fig. 3). This
analysis revealed that schema effects were
weaker in spaces with fewer than 10 di-
mensions, suggesting that the patterns we
are measuring with fMRI reflect multiple
distinct aspects of the stimuli and cannot
be explained by a low-dimensional signal,
such as overall arousal or attention. Visu-
alizing the characteristic spatial patterns
for each of the 8 schematic events in two
independent groups of subjects (Fig. 4),
we can observe that the spatial patterns
are qualitatively both consistent across
groups and distinct across schemas. The
maps contain reliable spatial structure at a
scale of �1–2 cm.

In the analyses above, we divided each
schema into four events (e.g., entering the
restaurant, being seated, ordering, and
eating food), and then measured the mean
similarity of the patterns evoked by each
event. An alternative analysis was con-
ducted in which a single average pattern
was used for each story (rather than a pat-
tern for each event). This showed effects
that were in the same direction (stronger
within- than across-schema correlations),
but substantially weaker (all p � 0.12),
suggesting that the representations in
these regions are distinct for each of the
stages of the schematic script.

These results indicate that default-mode regions represent
schematic events in a way that generalizes across narratives. How-
ever, building schematic representations of specific events does
not necessarily imply that these regions are tracking the full tem-
poral script associated with restaurant or airport experiences. To

determine whether these regions are sensitive to the longest-
timescale structure across the narratives, we ran a control exper-
iment with a separate group of subjects. Rather than viewing or
listening to the intact stories, these subjects were presented with
scrambled versions of the stories in which the schematic events
were presented out of order and drawn from multiple stories

Figure 3. Dimensionality of event patterns. To estimate the underlying dimensionality of the spatial event patterns, the SRM was used to project the group functional data into lower-dimensional
spaces. With only two dimensions (the smallest possible dimensionality for which correlations can be computed), no regions show a schema effect significant at p � 0.01 and only SFG shows an
effect significant at p � 0.05, indicating that a simple low-dimensional signal (such as global attentional modulation) is not sufficient to explain the results reported in Figure 2 (which used an SRM
dimension of 100). Because the effects for all regions asymptote at�10 dimensions, we estimate that, across subjects, the fMRI signals of schematic event patterns span an�10-dimensional space.

Figure 4. Visualization of schematic patterns. The spatial pattern associated with each of the schematic events was computed
for two independent groups of subjects. Visualizing these patterns on the cortical surface (with warm colors indicating regions with
above-average activity and cool colors indicating regions with below-average activity, masked to show only those voxels that
exhibited schema-related effects in Fig. 2b), we observe that the spatial patterns are highly reliable across the split halves, and the
patterns are visually distinct between the two schemas.
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within the same schema and modality (Table 1). As before, we
computed the spatial activity patterns evoked by the events of
each story and compared them across stories to determine
whether events of the same schematic type exhibited similar pat-
terns. The same stimulus events were being compared in both
cases (e.g., the spatial pattern for the third event of Brazil in one
group was correlated with the pattern for the third event of Brazil
in the second group); however, the context in which those events
had been presented to the subjects was different in the intact and
scrambled groups. Therefore, brain regions that responded
purely to the content of the current event should be unaffected by
the scrambling, whereas brain regions sensitive to the overarch-
ing schematic context should show disrupted activity patterns
and decreased schema effects.

As shown in Figure 5, we found that the scrambling signifi-
cantly disrupted the schema effects in mPFC (p � 0.028), and a
post hoc searchlight analysis within mPFC identified the ventral
portion as the primary subregion impacted by the scrambling.
Individual schematic events are therefore not sufficient to evoke
strong schema-related activity patterns in mPFC without a co-
herent temporal script. None of the other regions showed a sig-
nificant disruption of their schema effect with scrambling (all p �
0.11), with some regions (such as angular gyrus and SFG) actually
showing nonsignificant trends in the opposite direction (with
disruption of a coherent narrative structure causing more sche-
matic event representations).

We additionally performed a more stringent analysis to deter-
mine whether a story’s schema (for intact stories in the main
experiment) could be predicted from brain activity without
labeling its temporal structure. Successfully predicting the
schema of a held-out, unlabeled timeseries requires not just
that the correctly segmented event patterns are similar to the
correct schema (as in the prior analysis), but also that there is
no segmentation of the timeseries that yields event patterns
similar to the incorrect schema. Using event annotations from 7 of
the 8 stories from each schema, we constructed characteristic activity
patterns for each of the events from each schema. Using an HMM
(Baldassano et al., 2017), we then attempted to segment the held-out

stories into schematic events, with activity patterns matching the
characteristic schema patterns from each schema. This allowed us to
predict the schema type of the held-out, unlabeled story, based on
which set of characteristic patterns best matched its evoked
activity.

Even in this highly challenging classification task, we found
significantly above-chance performance (Fig. 6) in SFG (75%
accuracy, p � 0.001), mPFC (83% p � 0.001), and PMC (69%,
p � 0.001). The other ROIs yielded lower, nonsignificant levels of
performance (angular gyrus: 58%, p � 0.142; auditory cortex:
57%, p � 0.176; STS: 58%, p � 0.209; hippocampus: 55%, p �
0.305; PHC: 58%, p � 0.149). We also performed the analysis
using an alternative cross-validation procedure, in which all sto-
ries from the same run were held out. Again, classification accu-
racies above chance were observed in SFG (74% accuracy, p �
0.024), mPFC (79%, p � 0.004), and PMC (80%, p � 0.001).
Angular gyrus also exhibited above-chance accuracy (75%, p �
0.001), whereas other regions were not significantly above chance
(auditory cortex: 50%, p � 0.483; STS: 45%, p � 0.635; hip-
pocampus: 50%, p � 0.502; PHC: 58%, p � 0.209).

Finally, we used a data-driven method to identify shared
structure among stories within a schema, without the use of any
prior knowledge of the schema’s temporal event structure (unlike
the prior analysis, which used labeled annotations during train-
ing). Unlabeled time courses from all eight stories within a
schema were fit by an HMM, which sought to segment all stories
into a sequence of events such that the average activity patterns
within each event were similar across stories (Fig. 7a). We varied
the number of latent events from 2 to 6 and measured how well
the data-driven correspondence matched the hand-labeled sche-
matic structure.

We found that SFG, mPFC, and PMC were all able to produce
above-chance story alignments (Fig. 7b), with the match peaking
around four events (the number of schematic events the stimuli
were constructed to have). The correspondence was optimized
simply to align the fMRI timeseries of different narratives, and
was not guaranteed to share any similarity with the hand-labeled
annotations. As shown in an example alignment derived from the

Figure 5. Effect of scrambling events on schematic correlations. A separate control group of 13 subjects was shown the same clips as in the main experiment, with the same schematically blocked
structure, but drawn randomly from different stories and in a random order. We compared the magnitude of the schema effect for story pair correlations between subjects in the main experiment
(as in Fig. 2) with the effect for correlations between subjects in the main experiment and the control experiment. Scrambling the event clips did not significantly disrupt schematic patterns in
posterior regions of the cortex but did significantly reduce the similarity between schematic events in mPFC, specifically in the ventral portion of mPFC (inset). This result shows that schematic
patterns in mPFC are significantly enhanced by having intact, predictable script structure on the timescale of multiple minutes. Surface map thresholded at FDR � 0.05 within mPFC. *p � 0.05, by
permutation test.
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SFG data with four events (Fig. 7c), the HMM is able to find
correspondences across stories despite large variability in their
specific content. These results indicate that schematic scripts are
not only detectable in these regions (using the supervised analyses
presented above) but are indeed a dominant organizing principle
of their dynamic representations which can be discovered from
an unsupervised alignment across stories.

Discussion
Our results provide the first evidence that naturalistic perception
activates dynamic information about the temporal structure of
real-world scripts in mPFC, as well as a broader network,
including SFG and PMC. All three of these regions exhibited
cross-subject, cross-modal shared representations of sche-
matic events that could be used to classify the script type of
held-out stories. Time courses in these regions can be used to
produce unsupervised alignments of stories with shared
scripts, indicating that schematic representations are a pri-
mary driver of their ongoing representations. Additionally,
the schematic representations in mPFC were disrupted when
the events were presented outside the context of an intact
temporal script, providing evidence that this region is in-
volved in the selecting and maintaining script information on

long timescales (on the order of multiple minutes). We also
found weaker, less consistent evidence for schematic represen-
tations in the angular gyrus, STS, and PHC.

Prior work has shown that high-level regions, including PMC,
exhibit activity patterns that generalize across audio and video
versions of the same story (Zadbood et al., 2017); this work ex-
tends this generalization to a further level of abstraction, showing
similarities between distinct stories with very different content
but a shared schematic skeleton. Our HMM-based classification
approach (Baldassano et al., 2017) allows us to predict the sche-
matic category of held-out stories with varying event timings
purely from fMRI data, extending traditional decoding analyses
into the temporal domain.

Brain regions associated with schematic representations
There has been very little prior work investigating the neural
mechanisms of real-world script-based perception. Work on
simpler types of schematic representations has consistently im-
plicated mPFC, based on encoding activity (van Kesteren et al.,
2010, 2013; Hsieh and Ranganath, 2015; Brod et al., 2016), recall
activity (Brod et al., 2015), gene expression (Tse et al., 2011), and
lesion studies (Warren et al., 2014; Spalding et al., 2015). Our
results connect this large body of work with naturalistic scripts,

Figure 6. Schema classification of a new story. a, Using the labeled events from 7 of the 8 stories (from each schema), we computed the average spatial activity pattern for each of the 4 events
(from each schema) and used these as the latent event representations in two HMMs. We then used the HMMs to find the best possible alignment of the held-out stories to each schema (without
being given any event annotations) and predicted the schema of the held-out stories based on which of these alignments was better. b, SFG, mPFC, and PMC, and mPFC all showed classification rates
well above chance, indicating that these regions exhibit robust schema-related patterns that can be identified in novel stories even without explicit event labels. **p � 0.01, by bootstrap test.
Shaded regions represent bootstrap confidence distributions.
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suggesting that the same underlying neural mechanisms may be
at play in both cases. Although the precise location of these mPFC
results varies across studies, our peak effects fall squarely within
an ROI (Yeo et al., 2011) belonging to the default mode network
(Buckner et al., 2008), which has direct anatomical connections
to PMC (Greicius et al., 2009).

Schematic representations in mPFC are thought to interact
with a network of posterior cortical regions, including angular
gyrus (Hsieh and Ranganath, 2015; Gilboa and Marlatte, 2017)
and posterior medial regions such as posterior cingulate and ret-
rosplenial cortex (van Buuren et al., 2014; Hsieh and Ranganath,
2015). Our results show strongly schematic responses in PMC
and (less consistent) effects in angular gyrus, even in conditions
where schema effects were disrupted in mPFC, providing evi-
dence that these regions intrinsically represent schematic infor-
mation during perception. These regions are known to be
sensitive to the structure of real-life events over relatively long
timescales (minutes) (Hasson et al., 2015; Baldassano et al., 2017)
and are involved during a spoken replay of a narrative (J. Chen et
al., 2017; Zadbood et al., 2017), suggesting that they encode and
simulate sequences of actions in the world.

Finally, some studies have argued for schema formation
within the hippocampus (McKenzie et al., 2014), whereas others
have found that the hippocampus is most coupled to the cortex in
the absence of a schema (van Kesteren et al., 2010). We found
weak, nonsignificant effects in the hippocampus in all of our
analyses. It is possible that extensively learned scripts (such as the
ones we used) are consolidated entirely into the cortex and are no
longer mediated by the hippocampus (Norman and O’Reilly,
2003), or that hippocampal patterns would become schema-
specific if subjects’ attention was explicitly directed to the sche-
matic structure of the stories (Aly and Turk-Browne, 2016).

Another possibility is that extensively learned script representa-
tions are supported by highly sparse activity (possibly only pres-
ent in a subregion of the hippocampus) that is not easily
detectable using fMRI, or that requires specialized scanning
sequences.

Sensitivity to script structure in mPFC
Temporally scrambling natural stimuli has been a common ap-
proach to assess the sensitivity of brain regions to temporal struc-
ture at different timescales (van Kesteren et al., 2010; Lerner et al.,
2011; Hasson et al., 2015; Aly et al., 2018). To understand how the
overall script context influenced event patterns, we scrambled
our stimuli at the very coarse timescale of events (averaging 45 s
long), and then compared the responses evoked by the scrambled
stimuli with those evoked by the intact stimuli for pairs of stories
from the same or different schemas. Our finding that only mPFC
was sensitive to structure at this very long timescale is consistent
with prior work showing that scrambling stories at the paragraph
level (�30 s) disrupted responses in mPFC, but that responses in
other high-level regions, such as PMC (after being temporally
“unscrambled”), looked similar to those evoked by intact stories
(Lerner et al., 2011). These results further support the view that
mPFC is one of the few regions that track past context over long
enough timescales to support the long-term temporal dependen-
cies encoded in full naturalistic scripts. It is also possible that the
context sensitivity in mPFC is not entirely due to script represen-
tations within mPFC itself, and could be modulated by scripts
stored in other regions.

Building specific events from general scripts
In a previous study (Baldassano et al., 2017), we found that brain
activity in posterior default mode regions jumps rapidly to a new,

Figure 7. Unsupervised alignment of events across stories. a, For each set of 8 stories within the same schema, we trained an HMM to identify a sequence of shared latent event patterns
that was common across all the stories (without using any hand-labeled events). This correspondence can then be compared with the hand-labeled correspondence between stories. b,
We can recover the schematic structure shared across stories using only fMRI data, without event labeling, from all three ROIs showing strong schema representations in the previous
analyses (SFG, mPFC, and PMC). This match is closest when the number of latent events in the model is similar to the true number of events (4). Dotted line indicates p � 0.01 by
permutation test, Bonferroni corrected for 5 tests. c, For example, the data-driven correspondence between time points of How I Met Your Mother and Up in the Air (from SFG, with 4
events) captures the shared schematic events (entering the airport, going through security, waiting at the boarding gate, and taking a seat on the plane) despite large differences in the
details of the narratives.
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stable pattern at the start of a new event. This result raises a
question: how can activity settle so quickly into a representation
of the new event, when there has been very little time to accumu-
late information about the content of the event? Our results sug-
gest a possible explanation of this phenomenon. If schematic
script information is rapidly activated at the beginning of an
event, and this information plays a critical role in setting the
representations in these regions, then a substantial portion of the
event representations can appear quickly at the beginning of an
event. This proposal is similar to theories of visual perception, in
which object associations are rapidly activated in mPFC and then
used to influence representations in perceptual regions (Bar,
2007). This account is also consistent with our dimensionality
analysis, which indicated that the event representations that were
shared across subjects and drove the schema effects were rela-
tively high-dimensional (spanning an �10-dimensional space),
suggesting that scripts can activate multiple distinct features of
presented or inferred aspects of an event. We note, however, that
the dimensionality of the underlying neural representations
could be overestimated by a linear model like SRM, due to
nonlinear effects, such as voxel saturation or interactions. In
future work, approaches, such as semantic modeling (Vodra-
halli et al., 2018), may be able to disentangle the contribution
of both schematic and specific content to the instantiation of
event representations.

Open questions
Although proposed models of schematic perception and memory
have focused on mPFC and the medial temporal lobe (van Kes-
teren et al., 2012), our results raise the possibility that SFG and
PMC could also play critical roles in representing the shared
schematic structure of individual events. Schematic represen-
tations in these regions may not be driven by top-down acti-
vation of scripts in mPFC but instead serve as the bottom-up
building blocks for a complete narrative script. Further exper-
iments will be required to identify the distinct functional con-
tributions of these regions to perceptual and memory tasks,
and to identify when and how they interact to produce sche-
matic representations.

Another critical dimension is how representations in these
regions develop over a lifetime (Brod et al., 2013) because mPFC
and its connections mature slowly throughout the first decade of
life (Sowell et al., 2004; Supekar et al., 2010) and real-world event
scripts can only be acquired after many exposures to events with
shared structure. Both developmental studies and computational
models of script learning could be used to understand how scripts
develop in complexity, and whether perceptual representations
become more script-based over time (Brod et al., 2013).

Finally, both this study and prior work on real-world scripts
(Bower et al., 1979) have examined only a small fraction of the full
library of scripts that adults have acquired over their lives, and
have focused primarily on narrative perception. Additionally, in-
dividual scripts should not be studied only in isolation because
many real-world situations involve multiple simultaneously ac-
tive scripts (Schank and Abelson, 1977). New methodological
approaches for studying perception in immersive real or virtual
environments (Ladouce et al., 2017) may allow us to sample more
broadly from the ever-changing mix of regularities present in our
daily lives.
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