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A B S T R A C T   

We explored the potential of using real-time fMRI (rt-fMRI) neurofeedback training to bias interpretations of 
naturalistic narrative stimuli. Participants were randomly assigned to one of two possible conditions, each 
corresponding to a different interpretation of an ambiguous spoken story. While participants listened to the story 
in the scanner, neurofeedback was used to reward neural activity corresponding to the assigned interpretation. 
After scanning, final interpretations were assessed. While neurofeedback did not change story interpretations on 
average, participants with higher levels of decoding accuracy during the neurofeedback procedure were more 
likely to adopt the assigned interpretation; additional control conditions are needed to establish the role of 
individualized feedback in driving this result. While naturalistic stimuli introduce a unique set of challenges in 
providing effective and individualized neurofeedback, we believe that this technique holds promise for indi-
vidualized cognitive therapy.   

1. Introduction 

Compared to healthy participants, depressed participants are more 
likely to negatively interpret ambiguous scenarios, especially those that 
contain self-referential prompts (Everaert et al., 2017). Past research has 
associated increased depression severity with the persistence of these 
negative interpretations even after learning that the scenarios ended 
positively (Everaert et al., 2018). To reduce this negative bias and 
encourage positive interpretations, researchers have used Cognitive Bias 
Modification for Interpretation (CBM-I) training (Mathews and Mack-
intosh, 2000). During positive CBM-I training, depressed participants 
are shown scenarios that differ in interpretation depending on the final 
word, e.g., The new people you meet will find you (boring/friendly). During 
training, the final word is revealed to disambiguate the meaning (e.g., 
friendly) so that participants become more likely to expect the positive 
outcome (Joormann et al., 2015). A meta-analysis collapsing across 
anxious and depressed individuals found that CBM-I training more 
effectively reduced negative biases than Attention Bias Modification 
(ABM) training, which involves training participants to direct their 
attention away from negatively valenced pictures (Hallion and Ruscio, 
2011). One explanation for the increased efficacy is that CBM-I training 
uses self-relevant stimuli that are inherently more realistic and relatable 

than the negative faces or isolated words used in ABM training. 
As with other training paradigms, however, results are mixed in 

regards to whether CBM-I training actually improves depressive symp-
toms (Jones and Sharpe, 2017). One explanation for the mixed clinical 
results is that the training uses a one-size-fits-all approach. In other 
words, all participants are trained in the same way, regardless of vari-
ability in symptoms, momentary lapses in attention, effort, or belief in 
one of the interpretations. This raises the prospect that better results 
could be obtained using individualized training methods with more 
realistic stimuli. Specifically, given that different interpretations of 
complex narrative and social scenarios yield different neural responses 
(Yeshurun et al., 2017), it might be possible to use real-time neuro-
imaging to track how well participants are adopting the desired inter-
pretation, and to provide feedback to bias them toward the desired 
interpretation (for recent reviews of real-time fMRI neurofeedback, see 
Stoeckel et al., 2014; Sitaram et al., 2017; Thibault et al., 2018; Wata-
nabe et al., 2017; Hampson, 2021; Taschereau-Dumouchel et al., 2022). 

Before trying this in a clinical setting, we need to demonstrate that it 
is possible to decode interpretations in real time, and that feedback 
based on this decoded interpretation is effective in shaping participants’ 
interpretations. The present study takes some initial steps toward this 
goal, by assessing whether it is possible to nudge participants’ 
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interpretation of an ambiguous narrative using real-time fMRI (rt-fMRI) 
neurofeedback. 

Here, we build on prior work demonstrating that high-level cortical 
areas differentiate interpretations of an ambiguous social narrative 
across individuals (Yeshurun et al., 2017; Finn et al., 2018; Nguyen 
et al., 2019). Specifically, we based our experiment on a prior study 
showing that neural responses to an ambiguous 12-min spoken narrative 
vary depending on how the story is interpreted (Yeshurun et al., 2017). 
In this study, Yeshurun et al. (2017) explicitly instructed participants to 
adopt one of two different interpretations before listening to the story in 
the fMRI scanner – in one interpretation, the main character’s wife is 
cheating on him, and in the other interpretation, the main character is 
just being paranoid (see Stimulus section below). This manipulation 
ensured that the two groups of participants would interpret the story in 
different ways, allowing the authors to measure neural signatures of the 
interpretations shared within each group. The authors successfully 
identified neural regions that accurately predicted the assigned inter-
pretation in held-out participants. Within these regions, the parts of the 
story that varied most in meaning based on the two interpretations were 
more likely to yield higher neural classification accuracy. 

In the current study, we pre-trained a classifier using the data from 
Yeshurun et al. (2017) to decode which interpretation participants were 
adopting; the data from Yeshurun et al. (2017) are openly available as 
part of the Narratives dataset released by Nastase et al. (2021). 
Crucially, instead of explicitly instructing participants to adopt a 
particular interpretation, we randomly assigned participants to an 
interpretation condition (without telling them which condition they 
were assigned to) and attempted to nudge them towards the assigned 
interpretation using neurofeedback. Specifically, while real-time par-
ticipants listened to the same story in the fMRI scanner, we used the 
pre-trained classifier to decode which interpretation the participant was 
most likely thinking about in a given moment, and then provided 
intermittent neurofeedback to push the participants toward their 
assigned interpretations – participants were rewarded when the classi-
fier’s estimate of their interpretation of the story matched the partici-
pant’s randomly assigned interpretation condition. 

After listening to the story, participants answered questions to assess 
if neurofeedback successfully biased story interpretations. Thus, the 
critical comparison was between each participant’s actual interpretation 
at the end of neurofeedback and the target interpretation determined by 
random group assignment. If neurofeedback was successful, participants 
in each of the assigned groups would be more likely to adopt the target 
interpretation of that group, causing interpretations between assigned 
groups to differ. Note that we chose this design to obtain initial proof-of- 
concept evidence that we would be able to “nudge” participants’ in-
terpretations, accepting that additional controls would be needed to 
establish the role of individualized neurofeedback in driving these re-
sults (see Discussion). Overall, we did not reliably bias participants to-
ward the target interpretations. However, taking into account the 
decoding accuracy of the classifier for each participant, we found that 
participants with the highest decoding accuracy were more likely to 
choose the target interpretation. 

2. Methods 

2.1. Participants 

Twenty-two participants from Princeton University and the sur-
rounding local community consented to participate in this study, but 2 
participants did not return for their second visit. Thus, 20 participants 
were included in the analysis (12 female, 2 left-handed, mean age = 20.5 

years). Participants received monetary compensation for their partici-
pation, including an additional bonus based on their neurofeedback 
performance ($20 maximum). The study was approved by Princeton 
University’s Institutional Review Board. 

2.2. Stimuli 

All participants listened to a 12-min adapted version of “Pretty 
Mouth and Green My Eyes” by J. D. Salinger, read by a professional 
actor. The same recording was used in Yeshurun et al. (2017). The audio 
stimulus began with 18 s of music and ended in silence; see Yeshurun 
et al. (2017) for further details about the stimulus. The audio stimulus is 
openly available as part of the Narratives dataset (Nastase et al., 2021). 

The story begins when the character Arthur calls his friend, Lee, after 
returning home late at night without his wife, Joanie. Arthur is con-
cerned about Joanie’s whereabouts. Lee is at home in bed with a woman, 
although the narrator purposefully leaves her identity ambiguous. Yes-
hurun et al. (2017) created two interpretation groups by briefing par-
ticipants on this woman’s identity before they heard the story. The two 
interpretation groups were:  

1. Cheating: Joanie is the woman in Lee’s bed. In this case, Joanie is 
cheating on her husband, Arthur, with Lee.  

2. Paranoid: Lee’s girlfriend, Rose, is the woman in Lee’s bed. In this 
case, Arthur is paranoid that Joanie is cheating on him and is both-
ering Lee late at night. 

2.3. Procedure 

On the first visit (Visit 1), participants consented to the experiment 
and underwent initial structural and functional scans for image regis-
tration. Because our pre-trained classifier was trained in standard MNI 
space, registering each participant’s brain to MNI space before Visit 2 
allowed us to apply the classifier in real-time. For registration details, 
see Methods, Sections 2.4.1 and 2.4.2. 

On the second visit (at least one day later, mean delay = 4.6 days), 
participants returned to complete 4 runs of neurofeedback training (one 
participant only completed 2 runs due to technical problems). Before 
training began, participants were randomly assigned in a double-blind 
fashion into either the cheating or paranoid interpretation group. 
Group assignment was performed via a Python script that saved the 
assignment as a text file to be used later during neurofeedback. This 
way, both the experimenter and participant were blind to group 
assignment. Of the 20 participants, 10 were randomly assigned to the 
cheating group and 10 were randomly assigned to the paranoid group. 
Importantly, the assigned interpretation group for a particular partici-
pant was the same across all 4 runs of neurofeedback training (i.e., if a 
participant was assigned to the cheating group for the first run, they 
were also in the cheating group for runs 2, 3, and 4). 

As noted above, we did not tell participants which interpretation to 
take at the onset of the experiment. Instead, we informed them of the 
two possible interpretations and that both were equally likely (meaning 
that there was no ground truth or correct interpretation). Thus, they 
would have to use neurofeedback to determine which was the correct 
interpretation for them. 

While participants listened to the story, we used a visual stimulus to 
present neurofeedback (Fig. 1). For most of the story, participants 
viewed a gray rectangle, indicating that they should simply continue 
listening. Four seconds prior to a specific period in the story when we 
would analyze brain activity (which we refer to as a station), participants 
indicated which interpretive “lens” (cheating or paranoid) they were 
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going to adopt for the upcoming station. Participants were free to choose 
either interpretation at any time, as long as they were trying to maximize 
their scores. Participants pressed their index or middle fingers to indi-
cate their choice of either the cheating or paranoid interpretation (left/ 
right position of choices was counterbalanced across participants). 

Two seconds after the probe, the station began. During these stations, 
the rectangle turned red to signal that brain activity was being recorded. 
We did this so that participants were aware of when we were analyzing 
their brain activity. We explicitly marked stations to help participants 
determine which thoughts led to higher rewards, in hopes of decreasing 
the credit-assignment problem inherent in the delayed rt-fMRI signal 
(Oblak et al., 2017); see Appendix A.3 for details on how we chose the 
stations. To account for hemodynamic lag, the BOLD data that we 
analyzed for each station were shifted by 3 TRs (4.5 s) from the actual 
TRs when the “station recording signal” was on screen. 

After each station, the data were preprocessed and the pre-trained 
model was used to decode the participant’s interpretation at that sta-
tion. The rectangle then displayed the neurofeedback score; a horizontal 
line through the center indicated the threshold to earn any extra money 
and the filled area corresponded to the score. If participants scored 
above threshold, the score was shown in green with the monetary 
reward underneath. Otherwise, the score was shown in gray with $0.00 
below the rectangle. Prior work has argued that intermittent feedback of 
this kind is more effective than continuous feedback (Johnson et al., 
2012; Emmert et al., 2017; Hellrung et al., 2018). Because of the 
aforementioned 3-TR hemodynamic shift, plus one TR of time for data 
analysis, participants typically had to wait 4 TRs (6 s) for the feedback 
display to appear after the end of the station (see Appendix B for more 
details regarding feedback timing). 

To assess the final interpretations after all runs, participants 
answered the same questions from Yeshurun et al. (2017). The 39 
questions contained 27 comprehension questions (e.g., What was the girl 
doing when the phone rang?) and 12 questions that directly probed 
interpretation (e.g., Did you think Joanie was cheating on Arthur?). 
Additionally, participants provided numerical ratings (spanning 1–5) 

indicating their opinions on various topics, such as how much they 
empathized with the characters, enjoyed the story, thought neurofeed-
back helped, etc. Lastly, participants completed a survey to assess 
perception and strategies. 

Note: We emphasized the following in our instructions before scan-
ning began, to make sure that participants were attending to neuro-
feedback throughout the entire experiment:  

• The story was written to be purposefully ambiguous, instead of there 
being one true interpretation.  

• You should try to interpret the story based on your neurofeedback, 
not what you think was intended by the author.  

• Even if you think that the correct interpretation was revealed in the 
story, characters might be lying. Keep using neurofeedback to guide 
your interpretations.  

• The neurofeedback scores reflect how clearly and correctly your 
brain is interpreting the story. Low scores can indicate either (1) 
noisy signals (e.g., poor focus) and/or (2) incorrect interpretations.  

• The neurofeedback score only represents the neural information 
recorded during the station. We keep track of your responses to the 
probes for analysis purposes, but the neurofeedback score you see is 
only based on your brain activity. 

Although strategic instructions of this sort are not necessary for 
neurofeedback-induced learning (e.g. Shibata et al., 2011; Linden et al., 
2012), we hoped that providing participants with explicit guidance 
would improve their performance (Scharnowski et al., 2015; Pamplona 
et al., 2020). The full set of instructions used in the experiment is 
included in Appendix D, Fig. 16. 

After scanning, participants completed a questionnaire and survey. 
Fig. 1 illustrates the full experimental design and the neurofeedback 
stimuli. 

Fig. 1. Experimental design. (a) Before scanning, we pre-trained a classification model on data from Yeshurun et al. (2017) to create template brain responses at each 
station. (b) On Visit 1, a high-resolution anatomical scan and a short functional scan were acquired for registration to MNI space. At least one day later, participants 
returned for 4 runs of story listening with neurofeedback training (Visit 2). Each run was about 12 min long, and featured the same audio stimulus used by Yeshurun 
et al. (2017). Each run included 7 stations where brain activity was analyzed. Stations varied in length from 3 to 16.5 s. (c) After each station, the neurofeedback score 
was displayed and participants received a reward based on the model prediction for that station, normalized by pilot experimental data. (d) Afterward, participants 
answered questions outside of the scanner to assess their final interpretations of the story. 
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2.4. Data acquisition 

All scanning data were acquired with a 3T MRI scanner (Siemens 
Skyra) and a 64-channel head coil. Sequences were matched to Yes-
hurun et al. (2017) as closely as possible. Both scanning sessions began 
with a Siemens scout scan for automated slice alignment to the ACPC 
axis. On Visit 1 only, we collected a high-resolution, T1-weighted 
magnetization-prepared rapid acquisition gradient-echo (MPRAGE) 
anatomical scan to facilitate normalizing each participant’s functional 
data to standard space: repetition time (TR) = 2300 ms, TE = 3.08 ms, 
flip angle = 9◦, resolution = 0.86 × 0.86 × 0.9 mm3, FOV = 220 mm2. 

We ran functional scans on Visit 1 for registration purposes only (i.e., 
without presenting stimuli); and we ran functional scans for the exper-
iment during Visit 2. All functional scans used a T2*-weighted echo- 
planar imaging sequence: 1.5 s TR, 28 ms echo time, flip angle = 64◦, 3 
× 3 × 4 mm3 voxel size, 64 × 64 matrix, 192 × 192 mm2 field of view, 
27 slices, no gap between slices, interleaved slice acquisition. 

No fieldmap scans were collected, as we were trying to best match 
the real-time data to the data used to estimate the pre-trained model. As 
the data from Yeshurun et al. (2017) did not include fieldmap scans, we 
omitted real-time susceptibility distortion correction in this experiment. 

2.4.1. Offline image registration 
The following sections describe how we registered each participant 

to MNI space after the Visit 1 scans, in preparation for Visit 2. We used 
fMRIPprep 1.2.3 (Esteban et al., 2019; Esteban et al., 2018; RRID: 
SCR_016216), which is based on Nipype 1.1.6-dev (Gorgolewski et al., 
2011; Gorgolewski et al., 2018; RRID:SCR_002502). The following 
description of preprocessing was generated with fMRIPrep. 

The T1-weighted (T1w) image was corrected for intensity non- 
uniformity (INU) using N4BiasFieldCorrection (ANTs 2.2.0; Tustison 
et al., 2010), and used as T1w-reference throughout the workflow. The 
T1w-reference was then skull-stripped using antsBrainExtraction.sh 
(ANTs 2.2.0), using OASIS as target template. Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale 
et al., 1999), and the brain mask estimated previously was refined with a 
custom variation of the method to reconcile ANTs-derived and 
FreeSurfer-derived segmentations of the cortical gray-matter of Mind-
boggle (RRID:SCR_002438, Klein et al., 2017). Spatial normalization to 
the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov 
et al., 2009, RRID:SCR_008796) was performed through nonlinear 
registration with antsRegistration (ANTs 2.2.0, RRID:SCR_004757, 
Avants et al., 2008), using brain-extracted versions of both T1w volume 
and template. Brain tissue segmentation of CSF, WM and GM was per-
formed on the brain-extracted T1w using fast (FSL 5.0.9, RRID: 
SCR_002823, Zhang et al., 2001). 

For the BOLD run collected during Visit 1, the following registration 
processing was performed. First, a reference volume and its skull- 
stripped version were generated using a custom methodology of fMRI-
Prep. The BOLD reference was then co-registered to the T1w reference 
using bbregister (FreeSurfer) which implements boundary-based regis-
tration (Greve and Fischl, 2009). Co-registration was configured with 
nine degrees of freedom to account for distortions remaining in the 
BOLD reference. Head-motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation and 
translation parameters) were estimated before any spatiotemporal 
filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). The BOLD time 
series was resampled onto the original, native space by applying a single, 
composite transform to correct for head-motion. The BOLD time series 
was then resampled to MNI152NLin2009cAsym standard space. First, a 

reference volume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep. All resamplings were performed with 
a single interpolation step by composing all the pertinent trans-
formations (i.e. head-motion transform matrices and co-registrations to 
anatomical and template spaces). Gridded (volumetric) resamplings 
were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels 
(Lanczos, 1964). 

Many internal operations of fMRIPrep use Nilearn 0.4.2 (Abraham 
et al., 2014, RRID:SCR_001362), mostly within the functional processing 
workflow. For more details of the pipeline, see the section corresponding 
to workflows in fMRIPrep’s documentation. 

2.4.2. Real-time image registration and processing 
As BOLD data arrived from the scanner, the data were transferred as 

bytes to a secure cloud server, where all subsequent processing steps 
were performed. The data were returned to the local Linux machine as a 
.txt file containing the final neurofeedback score to be displayed. Real- 
time processing was handled using the RT-Cloud software package 
(Kumar et al., 2021; Wallace et al., 2022); see Appendix B for full details 
on the cloud setup. 

BOLD data were acquired in the participant’s native space, but the 
pre-trained model was in standard MNI space. Therefore, we had to 
transform each incoming BOLD volume to MNI space in real-time. To do 
this, we combined Visit 1’s previously calculated registration steps from 
fMRIPrep with real-time registration of each new BOLD volume. In real- 
time, we used mcflirt (FSL 5.0.9, Jenkinson et al., 2002) to register each 
incoming BOLD volume with the example functional image acquired on 
Visit 1. We combined this transformation matrix with the two trans-
formation matrices calculated previously with fMRIPrep: (1) the trans-
formation from functional → T1w space, and (2) the transformation 
from T1w space → MNI space. All transformations were concatenated 
and performed in a single step using antsApplyTransforms (Avants et al., 
2008). Details of this pipeline performed on the cloud server are shown 
in Table 2 in Appendix B. 

2.5. Classification 

We used 7 pre-trained logistic regression classifiers (scikit-learn 
solver = ‘lbfgs’, C = 1), corresponding to the 7 stations. Classifiers tar-
geted regions of interest comprising the theory of mind (ToM) network 
and default mode network (DMN) based on interpretation-specific 
neural responses observed in these regions by Yeshurun et al. (2017), 
and prior work suggesting that these regions are effective targets for 
neurofeedback (Zhang et al., 2012; Harmelech et al., 2015; Skouras and 
Scharnowski, 2019; Pamplona et al., 2020). As noted above, the classi-
fiers were trained on previously-collected data from Yeshurun et al. 
(2017); see Appendix A for details on classifier construction. Each 
classifier estimated p(c), the probability that the participant was inter-
preting the story in line with the cheating interpretation (the probability 
of the paranoid interpretation was 1 - p(c)). We generated this proba-
bility estimate using scikit-learn’s predict_proba function (Pedregosa 
et al., 2011). For more detailed information on how we optimized the 
classifier design, see Appendix A. 

To convert this prediction to the neurofeedback score delivered to 
the participant, we normalized p(c) based on pilot data. We learned from 
the pilot experiment (Appendix C) that – in our paradigm, where par-
ticipants are allowed to form their own interpretations, as opposed to 
being explicitly told which interpretation to use as in Yeshurun et al. 
(2017) — the mean p(c) values varied considerably across stations, such 
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that many stations were strongly biased toward particular in-
terpretations (regardless of group assignment). To control for these 
biases, we decided to provide neurofeedback based on participants’ 
deviation from the “average neural interpretation trajectory” (where 
this “average neural interpretation trajectory” was computed by 
collapsing results across the two conditions in the pilot study), rather 
than providing neurofeedback based on whether participants’ decoded 
interpretation matched the assigned interpretation at a particular 
moment. That is, at a moment when the narrative leans toward the 
paranoid interpretation on average, we rewarded participants in the 
cheating group if their interpretation was closer to cheating than the 
average, even if (in absolute terms) their interpretation was closer to 
paranoid than to cheating. This kind of neurofeedback can be viewed as 
“nudging” individual trajectories off the default stimulus-driven path. 

Specifically, for each participant, at a given station st, we applied the 
following formula to transform p(c) to a neurofeedback score: 

scorec =
p(c)st − μst

3σst
+ .5  

where μst and σst were the mean and standard deviation, respectively, of 
p(c) for that station, from all participants and runs in the pilot experi-
ment. We included a scaling factor of 3 so that the z-scored differences 
would range roughly between [-0.5,0.5]. Thus, by adding 0.5 to this 
ratio, we could set the range to be [0,1]. In case scores were much larger 
or much lower than station means, we added the thresholds: 

scorec =

{
0, if scorec < 0
1, if scorec > 1 

Next, we generated a score based on group assignment with: 

scorefinal =

{
scorec, if assigned group = cheating
1 − scorec, if assigned group = paranoid 

In this framework, participants received a neurofeedback score of .5 
if their p(c) was equal to the mean across participants in the pilot 
experiment. To earn a reward, participants had to score above the sta-
tion’s mean in the assigned direction. To enforce this constraint, neu-
rofeedback scores ≤ .5 were converted to 0 values: 

scorereward =

{
scorefinal, if scorefinal > .5
0, if scorefinal ≤ .5 

In the results that follow, when reporting neurofeedback scores, we 
report this final value where scores ≤ 0.5 were converted to 0, since this 
corresponds to the actual rewards received by participants. 

2.6. Story comprehension and interpretation scores 

Participants answered 39 story questions: 27 general 
comprehension-based questions and 12 interpretation-specific questions 
(Yeshurun et al., 2017). We did not analyze one of the 
interpretation-specific questions that asked for Lee’s girlfriend’s name, 
since we informed participants that Lee had a girlfriend named Rose 
prior to the experiment. All participants answered this question 
correctly, regardless of their interpretation. 

To score the interpretation-specific questions, we assigned a +1 score 
to each answer corresponding to the cheating interpretation, and a − 1 
score to each answer corresponding to the paranoid interpretation. To 
calculate a final score, we totaled all interpretation-specific scores and 
divided by the total number of questions. Thus, a +1 indicates answering 
all questions consistent with a cheating interpretation, and a − 1 in-
dicates answering all questions consistent with a paranoid 
interpretation. 

To collapse across assigned groups and compare “correctness” of 
final interpretations (i.e., consistency with group assignment), we 
transformed the interpretation-specific scores by multiplying the scores 
for participants assigned to the paranoid group by − 1. After this 

transformation, a +1 score indicates answering all questions consis-
tently with one’s group assignment (correct), and a − 1 score indicates 
answering all questions inconsistently with one’s group assignment 
(incorrect). When we use these transformed scores in the analyses 
below, we refer to them as “correct interpretation” scores. 

2.7. Empathy ratings 

After answering the story questions, participants rated how much 
they empathized with Arthur, Lee, Joanie, and “the girl” (the mysterious 
woman in Lee’s bed). We expected those who favored the cheating 
interpretation to empathize with Arthur, and not with Lee and Joanie. 
Likewise, we expected those who believed the paranoid interpretation to 
feel more empathy for Lee and Joanie, instead of Arthur. To compute 
one score that captured the empathy bias, we calculated the difference 
between each participant’s empathy ratings for Arthur and Lee. Analo-
gously to how we computed “correct interpretation” scores, we also 
computed “correct empathy” scores by multiplying the empathy differ-
ence for all participants assigned to the paranoid group by − 1. Thus, 
positive “correct empathy” scores indicate that the participant empa-
thized with Arthur and Lee in a manner that was consistent with the 
assigned interpretation group. 

3. Results 

3.1. Story comprehension and interpretation scores 

Comprehension scores indicated that all participants understood the 
story (Fig. 2a); there was no significant difference between assigned 
groups (t(18) = 1.41, p = 0.17). Our neurofeedback manipulation did 
not push participants to their assigned interpretation, as indicated by the 
interpretation scores. Fig. 2b shows the interpretation scores by assigned 
group. Neither group showed significant bias toward their assigned 
interpretation (all p > 0.20). Further, the groups did not differ in 
interpretation scores (one-tailed t(18) = − 0.062, p = 0.48). 

3.2. Empathy ratings 

The empathy ratings for some of the characters differed by group in 
the “correct” direction of the assigned interpretations. While partici-
pants in the cheating group had numerically more empathy for Arthur 
than participants in the paranoid group, this difference was not signif-
icant (one-tailed t(18) = 1.38, p = 0.093). Additionally, participants in 
the paranoid group had more empathy for Lee than the participants in 
the cheating group (one-tailed t(18) = − 1.76, p = 0.048). The difference 
in empathy for Arthur and Lee was significantly different between the 
assigned groups, with those assigned to the cheating condition having 
more empathy for Arthur than Lee (one-tailed t(18) = 1.84, p = 0.041). 
Fig. 3 plots the empathy ratings by assigned group. Additionally, there 
was a significant positive correlation between the difference in empathy 
for Arthur and Lee and interpretation scores (Pearson r = 0.47, p =
0.037), implying that the more participants empathized with Arthur 
over Lee, the more likely they were to endorse the cheating interpreta-
tion in response to the interpretation questions. 

3.3. Neurofeedback scores 

If neurofeedback successfully modified neural responses to the story, 
we would expect participants to differ in the neurally-decoded cheating 
probability based on random group assignment. Fig. 4a plots cheating 
probability p(c) across all stations and runs. Against our expectations, 
participants in the cheating group did not have significantly larger p(c) 
during any individual runs – in fact, p(c) was numerically smaller for 
participants in the cheating group (compared to the paranoid group) in 
the fourth run. Similarly, participants did not show a significant 
improvement in neurofeedback scores from run 1 to run 4 (combining 
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Fig. 2. Average scores for (a) comprehension and (b) interpretation questions. (a): All participants understood the story. (b): Interpretations were not modified by 
neurofeedback – neither group was significantly pushed toward their assigned interpretation. Error bars = ±1 s.e.m. 

Fig. 3. Empathy ratings for (a) all characters and (b) the difference for Arthur and Lee, separated by assigned group. (a): Empathy ratings differed significantly in the 
predicted direction for Lee based on group assignment. (b): The difference in empathy for Arthur and Lee also differed significantly by assigned group. Error bars =
±1 s.e.m. * = p < 0.05. 

Fig. 4. Neurofeedback results, in terms of p(c) (a, c) and normalized neurofeedback score (b, d). (a) Average cheating probability (not normalized), separated by 
assigned group. The dashed line represents mean p(c) from the pilot experiment. (b) Neurofeedback scores that were delivered to participants during real-time 
neurofeedback, divided by assigned group. Figures (c–d) show the run-wise averages for the same values shown in (a–b), respectively. Error bars = ±1 s.e.m. 
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results from both groups, neurofeedback scores numerically decreased 
on average; neurofeedback scores numerically increased for the para-
noid group and numerically decreased for the cheating group; Fig. 4d). 
Thus, we were unable to reliably push neurofeedback scores, both in 
terms of p(c) and normalized neurofeedback rewards, in the assigned 
group direction. 

3.4. Probe responses 

Prior to each station, we probed participants as to which interpre-
tation they were adopting for this station. Fig. 5 shows the behavioral 
probe responses that were chosen, divided by assigned interpretation 
groups. While the average choices numerically diverged between groups 
in the assigned or “correct” direction for each of the runs, none of these 
run-wise differences were significant after correction for multiple 

Fig. 5. (a) Average probe responses during neurofeedback for individual stations, separated by assigned group. (b) Average probe responses during neurofeedback, 
collapsed across stations within each run and separated by assigned group. None of the run-wise differences were significant after correcting for multiple com-
parisons. Error bars = ±1 s.e.m. 

Fig. 6. Decoding accuracy results overall (a) and related to correct interpretation scores (b). (a) Cheating probability was numerically higher when participants 
endorsed the cheating interpretation compared to the paranoid interpretation, but this difference did not reach statistical significance. Note: the x-axis represents the 
probe responses at each station, not the assigned interpretation group. Lines connect each participant’s average probability for each response. (b) Correct inter-
pretation plotted as a function of decoding accuracy. Decoding accuracy and correct interpretation scores were positively correlated, suggesting that participants with 
accurate neurofeedback were able to learn to adopt the assigned interpretation. The black line indicates the line of best fit. Error bars = ±1 s.e.m. 
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comparisons. 

3.5. Decoding accuracy 

By collecting behavioral probe responses at each station, we were 
able to measure how accurately the classifier was decoding story in-
terpretations in each participant. If 1) a participant was truly adopting 
distinct interpretations when they gave a probe response of “cheating” 
vs. “paranoid”, and 2) the classifier was sensitive to these interpretive 
differences, then we would expect to see higher values of p(c) (i.e., the 
classifier’s estimate of the strength of the cheating interpretation) for 
stations where participants (behaviorally) reported thinking of the 
cheating interpretation compared to the paranoid interpretation. To 
assess this, for each participant, we separated all classification proba-
bilities by probe response. We averaged p(c) over all of the times the 
participant gave a “cheating” probe response and (separately) over all of 
the times the participant gave a “paranoid” probe response. We 
computed decoding accuracy for each participant by taking the difference 
of the average p(c) value for “cheating” probe responses and the average 
p(c) value for “paranoid” probe responses. Note that low decoding ac-
curacy can have multiple causes – the participant might not be adopting 
distinct interpretations, or the classifier might be insensitive (see Dis-
cussion) – but high decoding accuracy indicates that, to some degree, the 
participant is adopting distinct interpretations and the classifier is 
detecting them. Note also that the classifier was trained on data from 
Yeshurun et al. (2017), where participants merely listened to the stories 
and did not give behavioral responses during the scan. As such, there is 
no plausible route for the classifier to be picking up on purely motoric 
features of the behavioral response; rather, the classifier must be picking 
up on more central (non-motoric) differences relating to participants’ 
interpretations. 

On average, decoding accuracy was numerically above zero (i.e., p(c) 
values were numerically larger for stations where participants endorsed 
the cheating interpretation compared to the paranoid interpretation), 
but this effect was not significant (one-tailed t(19) = 1.40, p = 0.088). 
Results are shown in Fig. 6a. The figure also shows that there was 
considerable variation across participants in the level of decoding 
accuracy. 

We reasoned that participants with higher decoding accuracy would 
be receiving higher-fidelity neurofeedback, and consequently they 
should show a larger effect of neurofeedback on their final interpreta-
tion of the story. Consistent with this prediction, there was a significant 
positive relationship between decoding accuracy and correct 

interpretation scores (Pearson r = 0.56, p = 0.010; Fig. 6b). 

3.6. Results divided by decoding accuracy 

Given that decoding accuracy varied considerably across partici-
pants, we assessed if the outcomes described above were different in 
participants with high vs. low decoding accuracy. For these analyses, we 
performed a median split for each assigned interpretation group based 
on decoding accuracy. Thus, 5 participants from the cheating group and 
5 participants from the paranoid group were in the “best decoding” 
group and 5 from each group were in the “worst decoding” group. Next, 
we recalculated our results within each of these new groups. To combine 
participants who were assigned different interpretations, we again 
adjusted scores so that positive values relate to the assigned interpre-
tation and negative values relate to the opposite interpretation. 

Fig. 7. Average scores for (a) comprehension and (b) interpretation questions, divided by decoding accuracy. (a) Comprehension scores did not vary significantly 
between groups. (b) Correct interpretation was significantly larger for the participants with more accurate decoding. Key: B = best; W = worst. Error bars = ±1 s.e. 
m. * = p < 0.05. 

Fig. 8. The difference in empathy for Arthur and Lee, divided by decoding 
accuracy. Here, the empathy difference is adjusted for assigned group such that 
positive empathy differences indicate the correct direction. There was no sig-
nificant difference between the best and worst classifier groups in terms of 
modifying empathy. 
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3.6.1. Story comprehension and interpretation scores 
Comprehension scores did not vary significantly between decoding 

accuracy groups (t(18) = − 1.41, p = 0.18), shown in Fig. 7a. Interpre-
tation scores, however, were significantly higher for the best compared 
to worst decoding accuracy group (one-tailed t(18) = 2.44, p = 0.013), 
which was expected based on the significant positive correlation be-
tween decoding accuracy and correct interpretation (Fig. 7b). For the 10 
participants in the best decoding accuracy group, the average score was 
numerically positive (i.e., correct), but this score was not significantly 
greater than zero (one-tailed t(9) = 1.541, p = 0.079). 

3.6.2. Empathy ratings 
The difference in empathy for Arthur and Lee did not vary signifi-

cantly depending on decoding accuracy (one-tailed t(18) = 0.77, p =

0.23; Fig. 8). Still, participants with the best decoding accuracy had a 
numerically higher mean (indicating empathy scores that fall more in 
line with the “correct” interpretation) than those with the worst 
decoding accuracy. 

3.6.3. Neurofeedback scores 
We plotted neurofeedback scores, both in terms of prediction prob-

abilities and normalized neurofeedback scores (Fig. 9). Looking at in-
dividual stations, we only obtained one significant result after 
Bonferroni correction for multiple comparisons across stations: For the 
final station in the first run, neurofeedback scores were higher for par-
ticipants that had the best decoding accuracy (one-tailed t(18) = 3.40, p 
= 0.0016 before correction and p < 0.05 after correction). When aver-
aging over all stations within each run, the neurofeedback scores in the 

Fig. 9. Neurofeedback results, in terms of classification output (a, c) and normalized neurofeedback score (b, d). (a) Average classifier probability for the assigned 
interpretation, for the participants with the best and worst decoding accuracy. (b) Neurofeedback reward, divided by the participants with the best and worst 
decoding accuracy. Figures (c–d) show the run-wise averages for the same values shown in (a–b), respectively. Error bars = ±1 s.e.m. Significance was corrected for 
multiple comparisons using Bonferroni correction. * = p < 0.05. 

Fig. 10. Probe choices split by decoding accuracy. Participants with the most accurate decoding were more likely to choose probes consistent with their assigned 
interpretation by the end of training. Error bars = ±1 s.e.m. Significance was corrected for multiple comparisons using Bonferroni correction. ** = p < 0.01. 
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fourth run were numerically higher on average for participants that had 
the best decoding accuracy, but this was not significant after Bonferroni 
correction for four tests (one-tailed t(17) = 2.36, p = 0.015 before 
correction). 

3.6.4. Probe responses 
As shown in Fig. 10, choosing the correct interpretation during 

probes was closely related to decoding accuracy. For the second-to-last 
station, participants with the best decoding accuracy were signifi-
cantly more likely than participants with the worst decoding accuracy to 
choose the correct assigned interpretation in both run 2 and run 4 (for 
run 2, one-tailed t(18) = 4.20, p < 0.01 after correction for multiple 
comparisons; for run 4, one-tailed t(15) = 4.97, p < 0.01 after correction 
for multiple comparisons). The participants with the best decoding ac-
curacy were numerically more likely on average to choose the correct 
assigned interpretation for the same station in run 1, and for the pre-
ceding two stations in run 4, but these differences were not significant. 
Note that, across participants, the tendency to choose the assigned 
interpretation during these in-scan probes (averaged across all stations 
and runs) was positively correlated with participants’ tendency to 
choose the assigned interpretation on the post-scan questionnaire 
(Pearson r = 0.48, p = 0.033). 

4. Discussion 

In summary, we examined the effect of neurofeedback during a 
naturalistic spoken story on several behavioral and neural measures of 
narrative interpretation. Behaviorally, we tracked participants’ overall 
story interpretation at the end of neurofeedback, their empathy for the 
different characters at the end of neurofeedback, and also their re-
sponses to probes (during neurofeedback) about what interpretation 
they planned to adopt at each station. Neurally, we used a classifier 
(trained on previously-collected data from Yeshurun et al., 2017) to 
track what interpretation participants adopted at each station; we also 
tracked how much reward participants received, which was tied to how 
strongly their brain activity matched the assigned interpretation. 

When considering the entire participant group, the effects of neu-
rofeedback were fairly weak: Only one of the aforementioned measures 
(empathy for the characters) showed a statistically reliable effect of 
neurofeedback. The effects of neurofeedback were somewhat stronger 
when we grouped participants based on the station-to-station corre-
spondence between their behavioral probe responses and classifier evi-
dence (i.e., was the classifier more likely to favor the “cheating” 
interpretation at a station when participants behaviorally responded 
that they planned to adopt the cheating interpretation at that station). 
This decoding accuracy measure shows how well the classifier performs 
at decoding the interpretation that participants say they are adopting, 
regardless of whether that interpretation is the “correct” (i.e., assigned) 
interpretation. We found that participants who ranked high on this 
decoding accuracy measure were more likely to show the predicted ef-
fect of neurofeedback on behavioral interpretation scores. When we did 
a median split based on this measure (dividing participants into “best- 
decoding” and “worst-decoding” groups), the “best-decoding” partici-
pants showed a stronger effect of neurofeedback than the “worst- 
decoding” participants on behavioral probe responses for some stations 
in runs 2 and 4 (i.e., they were more likely to indicate that they were 
adopting the assigned interpretation for those stations). Also, for the 
final station in the first run, neurofeedback scores were higher for par-
ticipants that had the best decoding accuracy. 

There are two (non-mutually-exclusive) explanations for why neu-
rofeedback effects were generally larger in the “best-decoding” 

participants. One possibility is that our classification pipeline did a 
better job of decoding story interpretations in some participants than 
others. These participants may have received more accurate (and thus 
more useful) feedback, leading to larger neurofeedback effects. If some 
participants failed to show neurofeedback effects because of a poorly 
functioning classifier, then the most effective way to boost neurofeed-
back effects in future studies would be to improve our classification 
pipeline to make it work more consistently across participants (e.g., by 
trying to improve registration, ROI selection, classifier parameter 
choices, and the quality of the template data). Another possibility is that 
the classifier itself was working well in the “worst decoding” partici-
pants, but these participants had trouble shifting their interpretations (e. 
g., a participant might behaviorally signal that they intend to adopt a 
“cheating” interpretive lens for the upcoming station, but then fail to 
actually do this). That is, the problem may reflect a cognitive difference 
across participants (some participants can cleanly shift their in-
terpretations, some cannot) rather than a problem with neural decoding. 
If this is the case, perhaps screening participants beforehand with 
various behavioral tasks (e.g., measuring cognitive flexibility) could 
help exclude participants who will ultimately not benefit from neuro-
feedback. Based on our current set of results, we can not adjudicate 
between these two interpretations of why the “worst-decoding” partic-
ipants did not benefit from neurofeedback. 

For the neurofeedback effects that we did observe, we must critically 
assess the role of individualized neurofeedback in driving these effects. 
The premise of our approach is that measuring a particular individual’s 
interpretation neurally and using this signature as the basis for feedback 
is useful for changing their interpretation. Importantly, the presence of a 
difference between the two neurofeedback groups in our study does not 
necessarily mean that individualized neurofeedback was responsible for 
this difference. For example, say that everyone strongly adopts the 
cheating interpretation at a particular point in the story and the classi-
fier registers this. In this scenario, participants in the cheating group will 
be given “correct” feedback, reinforcing the interpretation, and partic-
ipants in the paranoid group will be given “incorrect” feedback, leading 
them to adopt the paranoid interpretation. The key point here is that we 
could achieve this same effect outside of the scanner (by using behav-
ioral data to pick a point in time when the interpretation is unambigu-
ous, and giving the two groups different feedback at that point). For our 
study, this scenario is unlikely, because we normalized by the mean 
interpretation (across all pilot-study participants) when giving feedback 
– as such, participants adopting the mean interpretation at a particular 
time point will receive the same (neutral) feedback, regardless of group 
assignment. 

Having said this, more work is needed to establish that individual-
ized feedback is still important. The gold standard for establishing a role 
for individualized neurofeedback is to include a yoked control condition 
where participants receive feedback based on brain data from another 
participant in the same condition (deBettencourt et al., 2015; see Sorger 
et al., 2019, for an overview of different control types for neurofeedback 
studies). If providing neurofeedback based on another participant 
“breaks” the neurofeedback effect, this is strong evidence that individ-
ualized neurofeedback is important. In our study, this kind of yoked 
control could be accomplished by replacing the neurofeedback at each 
station with the neurofeedback that would have been given to another 
participant from the same overall condition (cheating or paranoid) who 
had also behaviorally chosen the same interpretation (cheating or 
paranoid) at that station. Only upon running this control could we then 
conclude whether or not this rt-fMRI paradigm is able to alter thoughts 
through individualized neurofeedback. 

Returning to the clinical applications discussed at the beginning of 
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the paper: Our interest in this paradigm was driven by the idea that, 
eventually, we could use this approach to train depressed individuals to 
interpret realistic scenarios less negatively. What have we learned about 
the feasibility of this program of research from this study? Overall, we 
think there are reasons both for optimism and concern. On the optimistic 
side, we were able to see effects of neurofeedback on both behavioral 
and neural measures of story interpretation. On the pessimistic side, the 
effects were weak: The only dependent measure that showed a neuro-
feedback effect when looking at the entire participant pool was the 
“empathy” behavioral measure; all of the other effects only showed up 
when we filtered the participants based on how well the classifier output 
matched their behavioral probe responses. With the benefit of hindsight, 
we now think that the “mystery interpretation” approach may not have 
been the best way to proceed. In the present study, we told participants 
to explore interpretations and not to lock in on one. We thought that this 
would help participants pay attention to neurofeedback, but instead we 
may have encouraged participants to focus too much on hypothesis- 
testing strategies (e.g., adopting an interpretation contrary to the 
preferred one, to see if this results in a reduction in reward) – this 
approach may reduce engagement with the story overall, thereby 
weakening our effects. Going forward, we think that it might be more 
effective to simply reveal the assigned interpretation outright, and then 
use neurofeedback to maximize the degree to which participants adopt 
and sustain that interpretation over time. This approach would fit better 
with our long-term clinical goal of using this method to treat depression 
– there, you would want to inform participants that things will turn out 
well in the story and then help the depressed participants adopt and 
sustain that interpretation. Note that, if you reveal the desired inter-
pretation, this makes it less informative to use behavioral interpretation 
questions as a dependent measure (since participants will know the 
“right answer”) but neural measures (e.g., the output of a classifier 
tracking the presence of the correct interpretation) could be used 
instead. We could also look at transfer to other measures of depression. 

This work constitutes the first attempt to use rt-fMRI to alter ongoing 
thoughts related to naturalistic narrative stimuli. In addition to having 
greater ecological validity than traditional experimental stimuli, natu-
ralistic stimuli have the advantage of producing robust neural responses 

(Sonkusare et al., 2019; Nastase et al., 2020); they have been shown to 
be useful for studying individual differences (Vanderwal et al., 2017; 
Finn et al., 2020; Feilong et al., 2018) and for exposing neural correlates 
of clinical variables (Rikandi et al., 2017; Finn et al., 2018; Eickhoff 
et al., 2020; Salmi et al., 2020). Our use of naturalistic stimuli led us to 
use a design that differed in several ways from other fMRI neurofeed-
back studies (including studies using the popular Decoded Neurofeed-
back method; Watanabe et al., 2017; Taschereau-Dumouchel et al., 
2022) – in particular, our study did not include a separate “induction” 
period where participants were trained to upregulate or downregulate a 
particular cognitive state. This is a consequence of the fact that natu-
ralistic stimuli give rise to trajectories of meaning states (Baldassano 
et al., 2017) – as such, there was no guarantee that there would be a 
single neural state that we could induce or train to foster one interpre-
tation of the narrative over the other. Our practice of providing feedback 
during the story (as opposed to doing this in a separate phase) and using 
station-specific classifiers (vs. a single classifier for all stations) was 
meant to accommodate the dynamically-shifting nature of how narra-
tives are processed in the brain – instead of fostering a particular pattern, 
our procedure sought to encourage participants to adopt the “right 
pattern at the right time”. Overall, our study highlights both the chal-
lenges and future promise of using neurofeedback in a naturalistic 
context to reshape how we interpret ambiguous situations. 
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Appendix A. Classifier training 

In order to provide neurofeedback in real-time, we had to construct an accurate classifier based on previously collected data. In the sections to 
follow, we discuss our decision-making process for choosing (1) how we preprocessed the training data, and (2) which time points of the story would 
be used as stations. All analyses and results in this section rely entirely on a previously collected data set (Yeshurun et al., 2017) – they do not use any 
of the new data that we collected for this paper. 

A.1 Data acquisition 

We used previously-collected data from Yeshurun et al. (2017), where participants were explicitly instructed to adopt one of two different in-
terpretations before listening to the story in the fMRI scanner. This manipulation ensured that the two groups of participants would interpret the story 
in different ways, allowing the authors to look for neural signatures of interpretation that were shared within each group and differed across groups. 
The data set included 38 participants: 19 participants who were told that Joanie was cheating on Arthur, and 19 participants who were told that Arthur 
was paranoid. Note: The data published in Yeshurun et al. (2017) included 20 participants per group, but 2 of the participants (one from each group) 
had start times that did not match the others and were omitted from the analysis for this reason. For more details regarding this data set, see Yeshurun 
et al. (2017) and Nastase et al. (2021). We preprocessed the neural data from the remaining 38 participants in the same way as detailed above (see 
Methods, Section 2.4.1), using fMRIPprep 1.2.3 (Esteban et al., 2019; Esteban et al., 2018; RRID:SCR_016216). 
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A.2 Finding the optimal classifier 

To optimize our classifier, we ran multiple analyses exploring variants of our analysis pipeline. The goal of these analyses was to decide on 
preprocessing parameters for our neurofeedback analyses and also to decide what time points to use for neurofeedback. 

Fig. 11 shows a high-level overview of the classifier pipeline that we used for these parameter-optimization analyses. We discuss each step in detail 
next.

Fig. 11. Classifier pipeline for parameter optimization analyses. Before splitting the data into training and test data, we completed the following preprocessing steps 
for all participants: We masked the story time series given a specific ROI; we high-pass filtered the data based on a particular cutoff (or no cutoff) frequency; and we 
flattened this time series into a 2D matrix. Next, we randomly selected 2 participants (1 per group) to be left out for testing. For the remaining training data, we 
randomly selected 18 participants per group (with replacement) so the groups were balanced. Then, we trained a Shared Response Model (SRM) on all training data 
using k1 dimensions and removed the signal that was shared across all participants (regardless of group). Next, we subtracted the mean response (if this step was 
included). We then trained separate SRMs on each group using k2 dimensions and kept only the shared signal within each group. Finally, we trained the classifier on 
the separate-group shared signals (in voxel space). We then used the classifier to predict group labels for the 2 held-out participants. Key: C = cheating group; P =
paranoid group; SRM = shared response model.  

A.2.1 Step one: preprocessing 
Preprocessing steps (shown in boxes a-b of Fig. 11) entailed:  

1. Removing the first 2 TRs  
2. Masking with the given ROI  
3. High-pass filtering based on the given cutoff frequency  
4. Z-scoring each voxel’s time series  
5. Combining all participants to form a final matrix 

The parameters that were varied for our classifier optimization analysis included:  

1. ROI: We considered three ROIs for this study. The list of ROIs and the steps taken to create each ROI are shown in Table 1.  
2. High-pass filtering: Because the story lasted about 12 min, we had no a priori knowledge of what filtering cutoff would be optimal in removing 

noise. Thus, we tested 3 different frequency options for high-pass filtering: (1) no filtering, (2) high-pass filtering with a cutoff of 337.75 s as was 
done in Yeshurun et al. (2017), and (3) high-pass filtering with a cutoff of 140 s as is commonly done in fMRI studies. These options are represented 
in Fig. 12 as indices 0, 1, and 2, respectively.  
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Table 1 
All ROIs considered in our bootstrap analysis, with a description of how we created each mask. The index on the left corresponds to the ROI key shown in Fig. 12.  

Index Name Method N voxels 

0 Default Mode Network 
(DMN) 

Yeo et al. (2011): 
- resampled to functional space 

3757 voxels 

1 Theory of Mind (TOM) Neurosynth (Yarkoni et al., 2011): 
- used the association test only 
- thresholded at FDR-corrected p ≤ 0.01 significance 
- resampled to functional space 
- masked by average brain mask across all participants 

2414 voxels 

2 TOM clusters Yeshurun et al. (2017), Supplementary section (Table 1): 
- extracted significant clusters: left TPJ, precuneus, posterior cingulate, vmPFC, dmPFC, rIFG, lIFG, lSTS, and left 
temporal pole 
- converted to MNI space 
- created 10-mm cube around each cluster 
- resampled to functional space 
- masked by average brain mask across all participants 

240 voxels  

A.2.2 Step two: splitting data and cleaning signal with the shared response model (SRM) 
We based our SRM approach on Chen et al. (2015). The authors applied a novel two-step shared response model to the data in Yeshurun et al. 

(2017) in order to improve classification accuracy. Usually, SRM is used to extract the common signal to best represent the stimulus-evoked response 
to naturalistic stimuli (Chen et al., 2015; Vodrahalli et al., 2018). In this case, because the dataset in Yeshurun et al. (2017) included two groups who 
listened to the same narrative, we were not interested in the signal that was shared across all participants. Rather, we wanted to extract the signal that 
was common within each group, as the shared signals within each of the two groups would likely reflect interpretations. See Chen et al. (2015) for 
additional mathematical details on SRM analysis and BrainIAK (https://brainiak.org/; Kumar et al., 2021) for details on implementation. We modified 
their SRM approach slightly for our real-time application, as reported below. 

Analysis steps shown in boxes c-d of Fig. 11 entailed:  

1. Randomly selecting two participants (one from each group) to hold out of all  
2. Subsequent steps and keep as testing data.  
3. Randomly resampling 18 participants within each group (with replacement) to build the training data matrix.  
4. Training an initial SRM model with k1 dimensions using all 38 training participants, and removing the component of the signal that was shared 

amongst all training participants. The purpose of this step was to remove signal pertaining to processing that was common across all participants, 
regardless of interpretation (e.g., processing relating to low-level sensory features of the stimulus).  

5. Subtracting the mean response for each voxel over all participants. This step was done in Yeshurun et al. (2017) – it serves a similar function to 
running SRM on the full set of participants (i.e., it helps to remove signal that is shared across the two interpretation groups). 

6. Separating the groups by assigned interpretation and training another pair of SRMs, one for each interpretation group (separately), using k2 di-
mensions per SRM. This time, we kept only the shared component for each participant. This is intended to highlight shared variance that pertains to 
the assigned interpretation and remove parts of the signal that are idiosyncratic to particular participants (e.g., thoughts unrelated to the story).  

7. Compiling this data into the final training data matrix before testing the classifier. Note that the data were kept in voxel space throughout this 
analysis pipeline. 

The parameters that were varied for our bootstrap analysis included:  

1. K1: We modified the number of dimensions for the first SRM. We also omitted this first SRM (k1 = “0′′) under one parameter setting.  
2. Subtracting the mean: We either included this step or not.  
3. K2: We modified the number of dimensions for the two within-group SRMs. 

A.2.3 Step three: training and testing 
After all preprocessing steps were complete, we then tested the model on the 2 participants that were held out. To obtain confidence intervals for 

each preprocessing configuration, we ran 1000 bootstraps of each configuration – for each for these 1000 bootstraps, we randomly selected one 
participant per group to be used for testing data, and we resampled from the remaining 18 participants per group (with replacement) to obtain our 
training set. 

We used scikit-learn’s (Pedregosa et al., 2011) SVM classifier (kernel = ‘linear’, probability = True) to predict the group label of the 2 left-out 
participants. To identify which time points were most informative regarding the group label, we trained a separate classifier for each individual 
TR in the story. 

A.2.4 Bootstrapping results 
The results of our bootstrap analysis are shown in Fig. 12. We chose the classifier with the highest accuracy, averaging across all TRs. This classifier 

corresponded to the following preprocessing steps: ROI = large TOM mask, no high-pass filter, average signal removed, k1 = 0 (no step 1 SRM), and k2 
= 25. The performance of this classifier is shown in the red box in Fig. 12. 
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Fig. 12. Results from the classifier search. Shown are the top 20 performing parameters for classification ranked by the average accuracy across all TRs. Parameter 
settings along the x-axis are sorted from best performing (left) to worst performing (right). The red box marks which parameter set was ultimately chosen: ROI =
large TOM mask, average signal removed, no high-pass filter, k1 = 0 (no first stage SRM), k2 = 25. Error bars show 95% CI over bootstrap iterations. 

A.3 Finding stations 

After choosing the classifier with the highest accuracy over all TRs in the story, we wanted to improve the efficacy of neurofeedback by providing 
feedback at the moments when group interpretations, and thus neural activity, were maximally different. To this end, we used behavioral ratings from 
Yeshurun et al. (2017) to identify points in the story where interpretations were maximally different. Each of the story’s 179 segments were rated in 
terms of how much they differed in beliefs, emotions, and intentions depending on the context. 

To combine all the ratings into one score, we first z-scored belief, emotion, and intention ratings across raters. Then, we calculated segment scores by 
taking the mean of all ratings at each segment. Thus, larger segment scores meant that those time points were rated as differing more in the story. In 
Fig. 13, the segment scores are indicated by the dashed blue line and the average individual TR accuracy (from our chosen classifier) is plotted in black. 
The Pearson correlation between the TR accuracy and segment scores was r = 0.21, meaning that the more a segment was rated as differing between 
contexts, the better the TR classifier performed. This result aligns with similar results reported by Yeshurun et al. (2017) and provides a sanity check, 
as some parts of the story had nothing to do with the cheating versus paranoid interpretations (such as when the narrator described a chair). 

To determine the best time points for neurofeedback, we identified time points meeting the following criteria: (1) individual TR classifier accuracy 
≥ 0.55, (2) segment score ≥ 0, and (3) the first 2 conditions satisfied for at least 2 consecutive TRs. We referred to each set of contiguous TRs meeting 
these criteria as a station. After identifying these stations, we extracted a spatiotemporal pattern for each station in each participant by concatenating 
the spatial response patterns for all time points in the station, resulting in an n × v vector, where n is the number of time points in the station and v is the 
number of voxels in the ROI. We then trained and tested a classifier for each station using the same bootstrapping process that was described above: 
For each of the 1000 iterations, we randomly sampled participants with replacement to determine the training data and preprocessed the data with the 
chosen parameters (ROI = large TOM mask, average signal removed, no high-pass filter, k1 = 0 (no first stage SRM), k2 = 25). The only difference was 
in stage 3, when we trained and tested a different classifier for each station, instead of each TR. 

Out of the stations we tested, we chose final stations that had the highest accuracy and were evenly distributed throughout the story. Overall, the 
average TR classifier accuracy was 0.56 ± 0.08. The average accuracy for all stations was 0.64 ± 0.1. Thus, incorporating spatiotemporal information 
allowed us to increase classification accuracy. 

A.C. Mennen et al.                                                                                                                                                                                                                              



Neuroimage: Reports 2 (2022) 100111

15

Fig. 13. TR and spatiotemporal station accuracy shown over time. The x-axis shows the TR number, while the left y-axis shows the classification accuracy. The solid 
black line represents the individual TR classifier accuracy, with the shaded gray 95% CI over all bootstrap iterations. The dashed black line indicates the minimum 
TR accuracy needed to include a given TR in a station. The red lines show chosen stations, with their height indicating classification accuracy, with 95% CI over all 
bootstrap iterations. The blue line shows the segment score ratings (right y-axis). The positive correlation between the TR classification accuracy and segment scores 
implies that points in the story that were rated to differ in interpretation generally yielded more accurate classification. NOTE: We did not use the last 2 stations in 
our main experiment. See Appendix C for details. 

Appendix B. Cloud processing 

We designed our real-time pipeline to use a cloud server for processing, and thus minimize dependency on local computing resources (for a similar 
approach, see Mennen et al., 2021). The cloud-based real-time pipeline was implemented using the RT-Cloud software package (Kumar et al., 2021; 
Wallace et al., 2022). Once DICOM files arrived at the local Linux machine, they were kept in memory as bytes and immediately sent to the cloud 
computer. All header information (containing potentially sensitive participant information) was deleted from the DICOM before the file was sent to the 
cloud. On the cloud server, each BOLD volume was then registered to MNI space, preprocessed, and passed to that station’s classification model for a 
final neurofeedback score. Finally, a text file was returned to the local Linux machine to update the display. Control of the rt-fMRI pipeline was 
accessed via a website (requiring security permissions). Fig. 14 illustrates both the delineation between local vs. cloud processing, as well as the 
real-time preprocessing steps. Additionally, Table 2 lists the individual processing steps and software used for each step. 

With regard to timing: As noted earlier, we adjusted for hemodynamic lag by shifting by 3 TRs: If the “station recording” signal was visible to 
participants from TRs 7 through 12 for a particular station, we analyzed the data from TRs 10 through 15 for that station. Processing steps 1–5 from 
Table 2 were performed after each TR from the station, and processing steps 6–10 from Table 2 were also performed after the final TR from the station 
(after TR 15 in this example). We began monitoring for each classification.txt file at the start of the TR immediately following each station (TR 16 in 
this example) and looked again at the start of the next 9 TRs until the .txt file was received. Considering all participants, runs, and stations, the .txt file 
was always found at the start of the second TR following the end of the station (TR 17 in this example), with the exception of 2 times when it was 
received after 6 and 3 TRs due to variations in transmission and processing latency. Once the .txt file was received, the feedback was displayed on the 
same TR. The upshot of this process was that participants typically had to wait 4 TRs (6 s = 3 TR hemodynamic shift, plus one TR for processing) 
between the offset of the “station recording” signal and the appearance of feedback onscreen. 
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Fig. 14. Cloud processing configuration. Data files were sent to the remote cloud server, where they arrived in memory and were converted to a NIfTI file for further 
processing. A text file containing the neurofeedback score was returned to the local computer.  

Table 2 
List of preprocessing steps completed on the cloud server for real-time generation of neurofeedback scores.  

Step Description Software used 

1 Convert from DICOM bytes to save as a NIfTI image nilearn (Abraham et al., 2014) 
2 Calculate transformation matrix between current TR and reference image mcflirt FSL 5.0.9 (Jenkinson et al., 2002) 
3 Convert transformation matrix.mat →.txt c3d_affine_tool Convert3D (Yushkevich 

et al., 2006) 
4 Transform current TR to MNI space by concatenating all transformations antsApplyTransforms ANTs 2.1.0 (Avants 

et al., 2008) 
5 Read and mask NIfTI data in MNI space, store in memory nibabel (Brett et al., 2019) 
If current TR is the last TR in a station: 
6 Z-score data within voxels from the beginning of the story to that TR (and remove voxels that were outside of the brain by 

setting activity to 0 if value was < 100 or std < 0.001) 
custom Python code 

7 Subtract the average signal from the Yeshurun et al. (2017) data set custom Python code 
8 Classify station and generate NF score Scikit-learn (Pedregosa et al., 2011) 
9 Save score as text file RT-Cloud software (Wallace et al., 2022) 

Kumar et al. (2021) 
10 Send text file back to local Linux to update display RT-Cloud software (Wallace et al., 2022) 

Kumar et al. (2021)  

Appendix C. Pilot experiment 

Before we ran the real-time neurofeedback experiment described in the main text, we piloted an initial version of the experiment. Procedurally, the 
pilot experiment was the same as the experiment described in the main text, except as noted in the Methods section below. Due to an issue with the 
SVM classifier, the neurofeedback scores delivered to participants were sometimes incorrect, so the pilot was not a meaningful test of the neuro-
feedback manipulation. Nonetheless, as described below, we learned some important lessons that we were able to leverage to improve the design of 
the main experiment. 

The most important of these lessons relates to the ambiguity (or lack thereof) of the story. As discussed in the main text, Yeshurun et al. (2017) 
explicitly told participants which interpretation to adopt ahead of time, and observed neural differences as a function of the assigned interpretation. 
Our pilot experiment was the first study to explore how participants interpret events in the story stimulus when they are not explicitly told which 
interpretation to adopt ahead of time and (consequently) arrive at interpretations on their own. Naively, we had expected that, given the seeming 
“ambiguity” of the story, participants’ interpretations would be distributed fairly evenly between the two possibilities (cheating and paranoid) at each 
time point in the story. What we discovered is that – when participants are not told ahead of time which interpretation to adopt – their interpretations 
are strongly biased in different directions at different points in the story (i.e., some moments pull participants strongly toward the cheating inter-
pretation, and other moments pull participants strongly toward the paranoid interpretation). Put another way: the ambiguity of the story is not 
accomplished by making each moment individually ambiguous, but rather by see-sawing between moments where different interpretations are more 
likely, so that when participants integrate over time the meaning of the story is ambiguous. Below, we discuss how this discovery led us to re-think our 
neurofeedback approach, resulting in several changes between the pilot study and the study reported in the main text. 
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C.1 Methods 

C.1.1 Participants 
Nineteen participants consented to participate in this study. Two participants did not understand the task and were excluded from analyses. Data 

from the remaining 17 participants were retained for further analysis (10 female, 1 left-handed, mean age = 22.4 years). Participants received 
monetary compensation for their participation, including an additional bonus based on their neurofeedback performance ($20 maximum). The study 
was approved by Princeton University’s Institutional Review Board. 

C.1.2 Stimuli 
As in our main experiment, participants were randomly assigned to an interpretation group (cheating n = 9, paranoid n = 8). We told all par-

ticipants about the two possible interpretations before they listened to the story. The participants’ task was to figure out which of the two in-
terpretations was correct through neurofeedback. The auditory narrative itself was identical to the one presented in the main study. 

Participants responded to the same comprehension and interpretation questions that were used in the main experiment, with the exception of an 
additional survey that further probed individual strategies. 

C.1.3 Procedure 
We used the same procedure as described in the main text, except for differences noted below. This time, the mean delay between Visits 1 and 2 was 

3.1 days. 
The instructions used in the pilot were slightly different from the instructions used in the main experiment. The main-experiment instructions 

emphasized that the story is purposefully ambiguous with no “correct” interpretation, and that participants should pay attention to the neurofeedback 
to determine which interpretation we (the experimenters) favored. By contrast, the pilot-experiment instructions presented the task as a mystery, with 
one interpretation being true. The following points were emphasized in the pilot-experiment instructions:  

• Your mission is to figure out the truth behind a phone conversation and solve the mystery  
• The neurofeedback scores will reflect how well you’re interpreting the story; a higher score means you are closer to the correct interpretation 

The neurofeedback display for the stations (indicating when brain activity was being “recorded”, and then indicating the amount of reward that 
was accrued from that station) was the same as in the main experiment. However, participants in the pilot experiment were not asked to behaviorally 
indicate their chosen interpretation before each station (i.e., there were no behavioral responses during the story-listening task). 

As in the main experiment, participants listened to the story four times with neurofeedback. Note that feedback was provided at the full set of nine 
stations shown in Fig. 13 (the main experiment only used the first seven stations). Once scanning was completed, participants answered the story 
comprehension and interpretation questions. 

C.1.4 Data acquisition 
All scanning and preprocessing parameters were identical to those described in the main text. 

C.1.5 Real-time classification 
In the main experiment, participants were provided with feedback that was normalized relative to the mean classifier trajectory shown by par-

ticipants in this pilot study. For example, if the mean classifier score (from the pilot experiment) at a particular time point indicated a .2 probability of 
the cheating interpretation, and – in the main experiment – a participant in the cheating group showed a showed a classifier probability of .3 for 
cheating, they received positive feedback, even though (on an absolute scale) the brain state did not favor the cheating interpretation at that time 
point. 

Feedback in the pilot experiment was much simpler: Participants only received positive feedback if the classifier evidence favored the assigned 
interpretation – that is, participants in the cheating group had to show a classifier probability of cheating >.5 to get positive feedback. Specifically, we 
used scikit-learn’s (Pedregosa et al., 2011) SVM classifier (kernel = ‘linear’, probability = True) and the predict_proba function to convert the output of 
the SVM classifier to a scalar value pc indicating the probability of the cheating interpretation. 

The neurofeedback score seen by the participant was given by: 

scorefinal =

{
pc, if assigned group = cheating
1 − pc, if assigned group = paranoid 

Thus, the higher the neurofeedback score, the more the real-time participant’s neural response matched those of previous participants in the same 
assigned interpretation group. 

Unfortunately, due to a technical problem with the implementation of the predict_proba function, as applied to the SVM classifier in scikit-learn, the 
neurofeedback scores did not reliably indicate the correct probability. Because of this issue, we do not directly report neurofeedback scores in the 
results below, nor do we report effects of neurofeedback on participants’ behavioral interpretation scores. Instead, we show results from an offline 
logistic regression classifier (which did not suffer from this issue with predict_proba) that was applied to the data that we collected during the neu-
rofeedback period. This offline analysis accurately represents the logistic regression classifier’s estimate of participants’ interpretations at each time 
point in the story. 

C.2 Results: classifier scores 

Fig. 15 shows the average classifier-assigned cheating probabilities in the pilot experiment (computed using an offline logistic regression classifier, 
as described above), split by assigned neurofeedback group. This figure illustrates two important features of the data: First, the two neurofeedback 
groups showed very similar neural interpretation trajectories. The neurofeedback stations were chosen because they evoked strong neural differences 
between groups in Yeshurun et al. (2017) when participants were explicitly told which interpretation to take (Fig. 13), but the neurofeedback groups 
did not differ in our study (where participants were not explicitly told which interpretation to take – instead, they had to rely on neurofeedback to 
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guide them). We do not want to overinterpret this, because of the aforementioned bug in the neurofeedback scores, but it is nonetheless striking how 
similar participants’ trajectories were across groups. Second, and most importantly, the mean classifier probabilities varied sharply across stations, 
such that many stations were very sharply biased toward particular interpretations. Put another way, when participants were allowed to form their 
own interpretations (as opposed to being explicitly told which interpretation to use), they were naturally pulled to different interpretations at different 
points in the story. This was particularly true for the last two stations, where the cheating probability was low for all participants (the second-to-last 
station corresponds to the part of the story where Arthur tells Lee that Joanie has returned home). For participants in the Yeshurun et al. (2017) study, 
receiving this information led to stark differences in neural interpretations across the two groups (see Fig. 13) – participants in the paranoid group may 
have felt like this proved their case, whereas participants in the cheating group were forced to conclude that Arthur was an unreliable narrator and he 
was lying to Lee about Joanie returning home. However, for participants in our pilot study, this new information simply led them to conclude that 
Arthur was being paranoid.

Fig. 15. Classifier scores indicating the probability that participants were adopting the cheating interpretation. These were not the results used in real-time; these 
results were computed afterward with the same data and a logistic regression classifier. Error bars represent ±1 s.e.m. 

C.3 Discussion 

Before this pilot, we had assumed from the results in Yeshurun et al. (2017) that the story was uniformly ambiguous. However, the pilot results 
clearly show that, although the overall story is ambiguous, individual moments in the story were not equally ambiguous. The story’s narrative 
structure pulls the listener to contradictory interpretations at different points in time. 

This lack of “within-timepoint” ambiguity is problematic for our aims, for several reasons. First, if there is too strong of a narrative pull toward one 
interpretation at a particular time point, this will make it difficult to nudge participants to adopt a contradictory interpretation at that station. Second, 
lack of within-timepoint ambiguity undermines the purpose of neurofeedback, which is to give participants individualized scores based on their own, 
varying neural responses to the story. If all participants adopt the same stimulus-driven interpretation at a particular time point, then neural data from 
a particular participant does not tell you anything new, beyond what you already knew from the neural responses of other participants. For example, 
based on Fig. 15, we can be reasonably sure that a new participant will adopt the paranoid interpretation at station 8, without even measuring their 
brain activity, so there is no added value to collecting fMRI data at this point. 

Based on these results, we opted to make several changes to the paradigm for our own experiment. First, we removed the last two neurofeedback 
stations, where interpretations were strongly biased towards the paranoid interpretation (note that, while we no longer provided neurofeedback at 
these points in the story, participants still listened to and were scanned during the entire story). However, even after eliminating the most biased 
stations, there were still some (lesser) biases in interpretation at the other stations. To control for these biases, we decided to provide neurofeedback 
based on participants’ deviation from the “average neural interpretation trajectory” (where this “average neural interpretation trajectory” was 
computed by collapsing results across the two conditions in this pilot study) – see the Classification section in the main text for details. 

We also opted to make changes to the instructions that participants were given. The instructions in the pilot study told participants that there was 
only one true interpretation, and that they had to discover this one true interpretation. A problem with these instructions was that – once participants 
decided that they knew the answer – they had no reason to continue attending to the task. To address this problem, we changed the instructions to 
present the two interpretations as equally probable without one being correct; participants’ task was to discover the interpretation that we wanted 
them to adopt, not the “true” interpretation. We hoped that this would encourage participants to continue paying attention to the story and to the 
neurofeedback they received throughout the experiment. 

Lastly, for the main experiment, we added behavioral responses during neurofeedback (asking participants, before each station, to tell us which 
“interpretive lens” they would use for the upcoming station). We thought this would have three benefits: 1) it would promote continued engagement; 
2) it would give us a behavioral indicator of what interpretations participants were adopting during the task, which could be used as an additional 
dependent measure; and 3) it would give us a way of assessing classification accuracy (by comparing the classifier estimate of the participant’s 
interpretation at a station to the behavioral response at that station). 
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Appendix D. Complete Instructions 

We include the instructions that were used in the main experiment in Fig. 16.   

Fig. 16. Instructions that span pages 1–4 shown in a, b, c, d, respectively.  
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Fig. 16. (continued). 

Fig. 16. (continued). 

A.C. Mennen et al.                                                                                                                                                                                                                              



Neuroimage: Reports 2 (2022) 100111

21

References 

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., 
Gramfort, A., Thirion, B., Varoquaux, G., 2014. Machine learning for neuroimaging 
with scikit-learn. Front. Neuroinf. 8 https://doi.org/10.3389/fninf.2014.00014. 

Avants, B., Epstein, C., Grossman, M., Gee, J., 2008. Symmetric diffeomorphic image 
registration with cross-correlation: evaluating automated labeling of elderly and 
neurodegenerative brain. Med. Image Anal. 12, 26–41. https://doi.org/10.1016/j. 
media.2007.06.004. 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., Norman, K.A., 2017. 
Discovering event structure in continuous narrative perception and memory. Neuron 
95, 709–721. https://doi.org/10.1016/j.neuron.2017.06.041. 

Brett, M., Markiewicz, C.J., Hanke, M., Côté, M.A., Cipollini, B., McCarthy, P., Cheng, C. 
P., Halchenko, Y.O., Cottaar, M., Ghosh, S., Larson, E., Wassermann, D., Gerhard, S., 
Lee, G.R., Wang, H.T., Kastman, E., Rokem, A., Madison, C., Morency, F.C., 
Moloney, B., Goncalves, M., Riddell, C., Burns, C., Millman, J., Gramfort, A., 
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