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Neural alignment predicts learning outcomes in
students taking an introduction to computer
science course
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Kenneth A. Norman 1,2 & Uri Hasson 1,2

Despite major advances in measuring human brain activity during and after educational

experiences, it is unclear how learners internalize new content, especially in real-life and

online settings. In this work, we introduce a neural approach to predicting and assessing

learning outcomes in a real-life setting. Our approach hinges on the idea that successful

learning involves forming the right set of neural representations, which are captured in

canonical activity patterns shared across individuals. Specifically, we hypothesized that

learning is mirrored in neural alignment: the degree to which an individual learner’s neural

representations match those of experts, as well as those of other learners. We tested this

hypothesis in a longitudinal functional MRI study that regularly scanned college students

enrolled in an introduction to computer science course. We additionally scanned graduate

student experts in computer science. We show that alignment among students successfully

predicts overall performance in a final exam. Furthermore, within individual students, we find

better learning outcomes for concepts that evoke better alignment with experts and with

other students, revealing neural patterns associated with specific learned concepts in

individuals.
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Learning plays a central role in shaping our cognition. As we
gain new knowledge, our thinking changes: as physicist
Richard Feynman observed, “The world looks so different

after learning science”1. Recently, multivariate “brain reading”
analysis techniques have significantly advanced our under-
standing of how knowledge is represented in neuronal activity2–4.
These methods, together with representational similarity analysis,
have made it possible to delineate the fine-grained structure of
neural representations of learned knowledge, and to link neural
patterns to specific knowledge across multiple domains2,5–9. For
the most part, this body of work has examined well-established
concept representations (e.g. representations of objects and
animals10–12) rather than newly acquired concepts.

Recent imaging work has begun addressing this issue,
extending a large body of work that has studied changes in
neuronal circuits during and after learning13,14. The current state
of the art in assessing acquired conceptual knowledge based on
neural data is exemplified by Cetron et al.15. In that study,
engineering students and novices were presented with photos of
real-world structures and asked to consider the forces acting on
them. Neural classifiers were then trained to predict an expert-
defined category label (cantilevers/trusses/vertical loads) for each
item based on imaging data. These enabled the authors to detect
individual differences in understanding the physics concept of
Newtonian forces. In an earlier study, Mason and Just16 reported
a progression of activation throughout the cortex during learning,
providing group-level “snapshots” of the various cortical net-
works activated as participants progressed through explanations
about four simple mechanical systems.

By design, these studies were conducted under carefully con-
trolled experimental conditions. They employed a small set of
stimuli and categories within a narrow context which allowed
researchers to use custom-built, domain-specific classifiers.
However, to bridge the gap to real-world education we need to
develop general-purpose methods that can be applied to neural
data from an actual course (covering multiple topics) and are
capable of pinpointing which of those topics have (and have not)
been successfully learned. Unlike in the controlled setup that has
benefited earlier studies, in a typical college course students are
required to communicate with instructors and peers; actively use
a variety of static and dynamic learning resources inside and
outside of class; assimilate multiple new concepts simultaneously;
integrate course material over a prolonged period of several
weeks; and often master new skills. Therefore, we aimed to study
learning in a real-life setting: a “flipped” introduction to computer
science course in which students watched lecture videos outside
of class. The broad range of topics covered by the course enabled
us to look beyond overall performance measures and examine
learning at high resolution, i.e., specific topics in individual
students.

Key to our approach is how new information is communicated
to students and integrated in memory during learning. Com-
munication between individuals has been linked to neural cou-
pling, such that (i) the brains of speakers and listeners show joint
response patterns, and (ii) more extensive speaker–listener neural
coupling enables better communication17–19. Likewise, when
people watch the same video, shared activity patterns emerge
across the brain20. Recent imaging studies have shown that
memories of this shared experience are encoded in a similar way
across individuals, particularly in default mode network (DMN)
regions21,22. Furthermore, a study that compared neural activity
time courses in children and adults during short educational
videos found that the degree to which children showed adult-like
brain responses during math videos was correlated with their
math test scores23. Notably, specific concepts have also been
shown to evoke similar neural activity patterns across individuals,

suggesting a shared structure for neural representations2,24–27.
This body of work suggests that shared neural responses reflect
thinking alike. In the context of learning, the students’ goal could
be viewed as laying the neural foundation that would allow them
to think like experts.

Here, we focused on science, technology, engineering, and
mathematics (STEM) learning in academia. Our goal was to use
shared neural activity patterns across learners and experts to
quantify and predict learning outcomes in a popular course at
Princeton University. We tested the hypothesis that learning is
mirrored in neural alignment: the degree to which individual
learners’ neural representations match canonical representations
observed in experts. Our findings demonstrate that alignment
during video lectures over the course of a semester successfully
predicted final exam performance. Critically, we also obtained
fine-grained, concept-specific signatures of understanding in
individual brains. While verbally answering open exam questions,
alignment between students and experts and alignment between
students and classmates in medial cortical regions were both
positively correlated with performance across questions, within
individual students. Furthermore, a consistent set of relationships
between topics emerged across students, correlating with per-
formance within individual students and revealing how different
concepts were integrated together. These results reveal neural
activity patterns that reflect successful learning of specific topics
in individual participants within a broad-ranging, real-world
STEM course.

Results
Did alignment to canonical neural representations emerge during
learning, and did alignment reflect successful learning? To
address these questions, we examined neural activity patterns and
learning outcomes in undergraduate students and in graduate
experts. In collaboration with the Department of Computer Sci-
ence at Princeton University, we recruited undergraduate stu-
dents enrolled in COS 126: Computer Science—An
Interdisciplinary Approach. The course introduces basic concepts
in programming and computer science using a flipped classroom
model, with lecture videos watched outside of class. Students
underwent functional magnetic resonance imaging (fMRI) scans
five times during a 13-week semester while watching a subset of
that week’s video lectures in the scanner. Subjects were asked not
to view these lecture videos online before the scans. The subset of
lectures shown in each scan was approximately 40 min long and
comprised 3–5 segments (21 segments, 197 min in total). On the
final week of the semester, students were shown—in the scanner
—five 3-min lecture recap videos with the highlights from pre-
vious weeks, followed by a final exam (Fig. 1a and Table 1).

To establish a baseline, the same exam was also given to stu-
dents at the beginning of the semester, in written form (“pre”
exam). Graduate experts underwent the final scan only, watching
the recap videos from all lectures and completing the final exam.
The exam was self-paced, with exam questions (16 in total)
spanning a variety of course topics from programming to theory
(see Supplementary Text for exam questions). In the final exam,
participants were asked to give verbal responses to visually pre-
sented questions (mean response length 31.9 s, s.d. 24.7). Ques-
tions were scored individually by course staff, providing a fine-
grained measure of understanding. All students received a score
of zero on the baseline exam (Fig. 1b). This confirmed that stu-
dents had no prior knowledge of course material. By the end of
the course, all students demonstrated knowledge gains (pre-post
comparison, two-sided t-test, t(19)=−12.6, p < 0.001), with
substantial variance across students (range 22–76 out of 100,
median 53.1, s.d. 17.1).
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Prediction of learning outcomes from neural activity during
lectures. Our first goal was to predict learning outcomes from
brain activity during lecture videos. To this end, we calculated
neural alignment-to-class across all lectures, comparing each
student’s response patterns to the mean response patterns across
all other students (Fig. 2a and “Methods”). Alignment values
varied across the cortex, with the strongest values recorded in
visual occipital regions, auditory and language regions, and parts
of the default mode and attention networks (Fig. 2b). The
alignment map was qualitatively in line with the body of literature
showing that watching the same video elicits shared activity
patterns across individuals20,28. However, in the current work,
alignment maps were not thresholded (i.e. statistical analysis for
alignment effects was not performed), and all voxels were
included in the subsequent searchlight analysis in which we
correlated alignment and exam scores. This was done in order to
test whether variance in alignment was related to variance in
scores and avoid excluding brain regions (e.g. the hippocampus)
where alignment values were lower yet could be predictive of
learning outcomes. Correlation between alignment and exam
scores was done using a between-participants design, first in eight
anatomically defined regions of interest (ROIs) and then across
the entire cerebral cortex using a searchlight analysis. Our ROIs
included major nodes of the DMN and the hippocampus as well
as control regions in early sensory cortex and the amygdala. Our
selection of ROIs was motivated by findings that activity in the
DMN during memory encoding of new content (real-life stories
or audiovisual movies) predicted recall success for that
material21,22,29. The searchlight analysis enabled us to look for
regions showing a correlation between alignment and learning
outcomes in a data-driven manner. Throughout the manuscript,
searchlight size was 5 × 5 × 5 voxels (15 × 15 × 15 mm cubes), and
statistical significance evaluated using a one-sided permutation
test (creating null distributions by shuffling labels 1000 times),
controlling the false discovery rate (FDR) to correct for multiple
comparisons at q= 0.05 (refs. 12,30).

Alignment-to-class in ROIs during lecture videos showed a
significant positive correlation with final exam scores in the
angular gyrus, precuneus, anterior cingulate cortex (ACC) (all

overlap with the DMN), and the hippocampus, as well as early
visual and auditory areas (Fig. 2c, d and Table 2). Across ROIs,
the highest correlation values were observed in the hippocampus,
allowing the most reliable prediction of learning outcomes.
Alternative measures of alignment-to-class, in which we varied
the length of the time bin used for calculating spatial alignment,
yielded similar though somewhat weaker results (Supplementary
Table 1); likewise, we obtained similar results using a measure of
shared responses in the time domain (temporal Inter-Subject
Correlation, ISC; see Supplementary Table 1 for results using
these measures). Our cortical searchlight analysis showed multi-
ple brain regions where students’ alignment-to-class predicted
their final exam scores (Fig. 2d). In line with the ROI analysis
results, these regions included anterior and posterior medial (PM)
areas as well as the bilateral angular gyrus, key nodes of the DMN.
In addition, we observed significant correlations in temporal and
insular cortex. A power analysis revealed that prediction
improved as more data were aggregated across lectures
(Supplementary Fig. 1 and Supplementary Results).

Neural alignment between students and experts. Neural
alignment-to-class was strongly correlated with alignment-to-
experts. Experts were scanned during recap videos (16 min in
total) and while taking the final exam. We separately calculated
alignment-to-class and alignment-to-experts for each student in
each task and then correlated these measures using a between-
participants design (see “Methods”). The goal of this analysis was
to examine whether alignment-to-class reflected convergence on
expert patterns. Figure 3a shows results in an example ROI in
ACC during recaps, while Fig. 3b shows results in the same ROI
during the exam. In both tasks, alignment-to-class and
alignment-to-experts were positively correlated across all ROIs
(Table 3). A searchlight analysis revealed that these effects
extended to large parts of cortex, including the default mode and
attention networks. Cortical maps for recaps and the exam are
shown in Fig. 3c, d respectively. These results indicate that the
mean responses across all students converge to the average, or
canonical, responses seen in experts during both recaps and the

Lecture1 (Week 1)

Students only

a b

Lecture 2 (Week 3)

Lecture 3 (Week 5)

Lecture 4 (Week 8)

Lecture 5 (Week 10)

Recaps (Week 12)

Exam (Pre)

Exam (Post)

Time

Students & Experts

Outside scanner Inside scanner

Fig. 1 Study design and exam scores. a Study design. Students enrolled in an introduction to computer science course underwent six fMRI scans
throughout the course. During the first five scans, students were shown course lecture videos. On the final scan (bottom), students were shown lecture
recaps and given a final exam. Experts underwent the final scan only. See Table 1 for stimuli and task details. b Exam scores. Pretest (left) was performed
prior to scanning, posttest (right) was performed during scan 6. Individual students (n= 20) are shown in gray. Error bar, ±1 s.e.m.

Table 1 Stimuli and tasks.

Stimulus Participants Task Length of time bin for neural pattern Total stimulus length

Lecture videos Students Passive viewing 30 s of video (fixed) 197min
Recap videos Students+Experts Passive viewing 30 s of video (fixed) 16min
Exam (in scanner) Students+Experts Verbal response Entire question (variable) 10–22min
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final exam. Furthermore, it indicates that the individual differ-
ences seen across subjects in their ability to be aligned to class are
preserved when we look at their ability to converge to canonical
expert responses. Next, we asked whether the ability of each
student to converge to these canonical responses predicted
learning outcomes during the final exam.

Think like an expert: assessing learning success during exam
using expert canonical responses. We hypothesized that better
alignment to experts and to peers during question answering
would be linked to better answers. To test this hypothesis, we
obtained spatial activity patterns during each question and calcu-
lated same-question alignment-to-experts and alignment-to-class
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scores (Fig. 4a, see “Methods” for details). These scores allowed us
to quantify how the neural patterns evoked by each question were
related to the neural patterns evoked by the same question in other
participants. We correlated alignment and question scores sepa-
rately (across questions) within each student (see Fig. 4b for an
example from a single student in a single ROI), and then took the
mean across all students (Fig. 4c). Importantly, this within-
participant design allowed us to capitalize on between-questions
variability while controlling for individual differences.

Alignment-to-experts and alignment-to-class were both posi-
tively correlated with exam scores across several ROIs. In the
ACC and superior temporal ROIs, alignment-to-class and
alignment-to-experts were both positively correlated with exam
scores (Fig. 4d and Table 2). Exam scores were also significantly
correlated with alignment-to-experts in the precuneus and
alignment-to-class in the hippocampus, angular gyrus, and visual
ROIs. Our searchlight analysis results supported these findings,
highlighting regions across anterior and PM cortex bilaterally
(Fig. 4d). Importantly, both alignment-to-experts and alignment-
to-class searchlight results highlighted these medial cortical
regions. These findings show that neural alignment of specific
question-by-question patterns was associated with better learning
outcomes, indicating that concepts that were represented more
similarly to the experts (and the class) were the concepts that
students better understood. The results further highlight the ACC
and medial prefrontal (mPFC) regions as areas where both
alignment-to-class and alignment-to-experts were significantly
correlated with behavior.

We then turned to examine the link between neural alignment
and behavior while controlling for response length. This was
motivated by the possibility that (i) longer answers might have
yielded more stable spatial patterns, and that (ii) response length
and quality could be linked (e.g. better answers could be longer).
Therefore, a possible alternative explanation for our results is that
they were driven by response length. To address this, we used a
within-participant regression model to predict question scores

from answer length. This model yielded a residual error term for
each question (“residual score”, predicted score minus true score).
We then repeated our original analysis using the residual score
instead of the true score for each question. This procedure yielded
cortical maps that were highly similar to those shown here
(Supplementary Fig. 2 a, b). Thus, across all brain areas showing a
link between alignment and exam performance, effects were
robust to response length.

Knowledge structure reflects learning in individual students. In
the next set of analyses, we asked how individual concepts were
integrated together in learners’ brains. Specifically, we hypothe-
sized that learning new concepts also entails learning their con-
textual relations to other concepts. For example, the concepts
“binary tree” and “linked list” are related in a specific way (a
linked list can be used to implement a binary tree). To test this,
we first created a “knowledge structure” for each participant,
capturing the set of relationships between neural patterns evoked
by different questions. For each question in each participant, we
measured the similarity of the neural pattern evoked by that
question to the canonical patterns evoked by other questions (in
the class average or in the experts). We defined the set of
question-specific relationships as the knowledge structure for that
question for that participant. To predict performance, we then
compared that question-specific knowledge structure (for that
participant) to the question-specific knowledge structure for the
experts (alignment-to-experts) or for the class as a whole
(alignment-to-class) (Fig. 5a). The resulting alignment scores
were then correlated with question scores using a within-
participant design (Fig. 5b).

We found that knowledge structure alignment was positively
correlated with exam scores across the hippocampus, ACC,
angular gyrus and temporal ROIs when derived for the student
cohort (alignment-to-class, Table 2). In line with this, our
searchlight analysis showed robust results for alignment-to-class,

Fig. 2 Alignment-to-class during lectures predicts final exam scores. a Calculation of alignment-to-class during lecture videos. b Alignment-to-class
across the entire cerebral cortex. For demonstration purposes, this non-thresholded map shows mean alignment-to-class values across time and across
students. c Prediction of exam scores from neural alignment in example ROIs. Mean alignment-to-class across lectures (x-axis) is correlated with exam
scores (y-axis) using a between-participant design. Blue dots represent individual students. Asterisks denote significant correlation (one-sided permutation
test, corrected), *p < 0.05, **p < 0.01. See Table 2 for a summary of ROI results. d Prediction of exam scores from neural alignment across the cortex.
Searchlight analysis results shown. Voxels showing significant correlation are shown in color (one-sided permutation test, p < 0.05, corrected). LH left
hemisphere, RH right hemisphere, Ant. anterior, Post. posterior.

Table 2 Prediction of exam scores from neural alignment in ROIs.

Region of
interest (ROI)

Lectures Exam

"Same question" "Knowledge structure"

Corr. exam score and
alignment-to-class

Corr. exam score and
alignment-to-class

Corr. exam score and
alignment-to-experts

Corr. exam score and
alignment-to-class

Corr. exam score and
alignment-to-experts

Angular gyrus 0.62** 0.14* 0.10 (n.s.) 0.17* −0.03 (n.s.)
Ant. cingulate (ACC) 0.53** 0.28** 0.23** 0.21** 0.00 (n.s.)
Hippocampus 0.75** 0.16* −0.06 (n.s.) 0.13* −0.09 (n.s.)
Post. sup.
temporal gyrus

0.40* 0.25** 0.17* 0.23** 0.05 (n.s.)

Precuneus 0.61** 0.10 (n.s.) 0.18* 0.03 (n.s.) −0.06 (n.s.)
Amygdala 0.29 (n.s.) 0.06 (n.s.) −0.03 (n.s.) −0.04 (n.s.) 0.07 (n.s.)
Early auditory 0.46* 0.07 (n.s.) −0.02 (n.s.) 0.01 (n.s.) 0.08 (n.s.)
Early visual 0.41* 0.11 (n.s.) 0.12 (n.s.) 0.05 (n.s.) −0.02 (n.s.)

Correlation between spatial alignment measures and exam score during lectures and during the final exam. Results are shown in DMN ROIs as well as in control regions (text in italics) in sensory cortex
(visual, intracalcarine cortex; auditory, Heschl’s gyrus) and subcortex (amygdala). See Supplementary Table 1 for correlation results obtained using alternative ways to calculate alignment-to-class.
Asterisks denote significant correlation (one-sided permutation test, corrected across ROIs). *p < 0.05, **p < 0.01, n.s. not significant.
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highlighting medial cortical regions (Fig. 5c). Furthermore, the
searchlight analysis showed a remarkable correspondence
between knowledge structure and same-question results, with
both maps highlighting similar medial regions (Figs. 4d and 5c).
ROI and searchlight analysis results for alignment-to-experts
were not significant across all regions (p > 0.05, corrected). While
alignment-to-experts searchlight results were qualitatively similar

to alignment-to-class results (Supplementary Fig. 3, p < 0.01,
uncorrected), no voxels survived multiple comparisons correc-
tion. In sum, these results showed that (i) students’ exam
performance was significantly tied to their ability to create—and
reinstate—a specific set of relationships between neural repre-
sentations; and that (ii) the anatomical regions involved in
knowledge structure alignment showed high correspondence with

Fig. 3 Alignment-to-class and alignment-to-experts are positively correlated across the brain. Correlation between alignment-to-class and alignment-to-
expert during recap videos (left) and during final exam (right) are shown. a Between-subjects correlation during recap videos, in a single ROI. Top,
correlation in a single example 30-s time bin. Orange dots represent individual students. Bottom, mean across all time bins (solid black line). Trendlines for
individual time bins are shown in gray, with the example time bin shown in red. Asterisks denote significant correlation (one-sided permutation test,
corrected), *p < 0.05, **p < 0.01. b Between-subjects correlation during the final exam, in a single ROI. Top, correlation during the first question. Orange
dots represent individual students. Bottom, mean across all exam questions (solid black line). Trendlines for individual questions are shown in gray, with
the example question shown in red. Asterisks denote significant correlation (one-sided permutation test, p < 0.01, corrected). See Table 3 for a summary of
ROI analysis results. c Correlation during recap videos across the cortex, searchlight analysis results are shown. Voxels showing significant correlation are
shown in color (one-sided permutation test, p < 0.05, corrected). d Correlation during the final exam across the cortex. Voxels showing significant
correlation are shown in color (one-sided permutation test, p < 0.05, corrected). LH left hemisphere, RH right hemisphere, Ant. anterior, Post. posterior.
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regions involved in same-question alignment. As a control, we
repeated this analysis while controlling for response length, again
obtaining highly similar results (Supplementary Fig. 2c).

Effects in DMN regions across tasks. Across our dataset, we
repeatedly observed a link between learning outcomes and neural
alignment in mPFC regions, PM regions, left angular gyrus, and
medial temporal gyrus. We therefore performed an intersection
analysis to substantiate this observation and determine whether
the same, or different, voxels in these regions emerged across
tasks. This analysis highlighted voxel clusters in anterior medial
cortex, as well as in PM cortex and superior temporal cortex,
that showed significant effects across all alignment-to-class ana-
lyses (Fig. 6a). This set of regions overlaps in large part with the
DMN. Furthermore, the intersection of the correlation map of
same-question alignment-to-experts with exam scores and the
correlation map of same-question alignment-to-class with exam
scores yielded a similar map (Fig. 6b). These results indicated a
key role for DMN regions across different phases of learning and
further emphasized the link between alignment-to-experts and
alignment-to-class measures.

Discussion
In this work, we introduce a neural approach to predicting and
assessing learning outcomes in a real-life setting. This approach
hinges on the idea that successful learning involves forming the
right neural representations, which are captured in canonical
activity patterns shared across learners and experts. In the current
study, we put forward the notion that learning is mirrored in
neural alignment: the degree to which individual learners’ neural
representations match canonical representations observed in
experts. We tested this hypothesis in students enrolled in an
introduction to computer science course and in graduate student
experts, using a longitudinal fMRI design. Our findings show that
across regions involved in memory encoding and reinstatement
in the DMN and hippocampus, alignment successfully predicted
overall student performance in a final exam. Furthermore, within
individual students, learning outcomes were better for concepts
that evoked better alignment. We discuss the role of neural
alignment in learning and understanding below.

Neural alignment successfully predicts learning outcomes.
During learning, neural activity patterns in each student partici-
pant comprised both common and idiosyncratic components.
This is in line with a growing body of work showing that neural

alignment across individuals watching the same video or listening
to the same audio narrative is positively correlated with the level
of shared context-dependent understanding21,22,25,27. Our results
show that alignment-to-class was strongly correlated with exam
score: across students, stronger similarity to the class predicted
better performance (Fig. 2 and Table 2). This observation held
across the DMN, implicated in internally focused thought and
memory31–33. These results dovetail with findings that better
alignment to common patterns in these regions support better
memory for shared experiences21,22, as well as with recent elec-
troencephalogram findings linking higher temporal synchrony
(inter-subject correlation, ISC) during short educational videos
with higher motivation and better learning outcomes34,35.

Our finding that similarity to the class during lectures
predicted performance is also in line with imaging results
reported by Cantlon and Li23. In that study, the authors used
temporal ISC to show that children’s scores in a standardized
math test were correlated with the degree to which they showed
adult-like brain responses during educational math videos. These
correlations were localized to the intraparietal sulcus, a region
previously implicated in numerical processing. We observed
similar effects in our temporal ISC analysis as well as in our
analysis of spatial patterns (Fig. 2 and Supplementary Fig. 1). The
current study further extended the existing body of work to a
real-world college course setting, enabling us to directly assess
learning outcomes of course-specific material from brain activity
and demonstrate a role for the DMN in learning, discussed below.

A key point here is that, in our flipped class, a significant part
of learning occurred outside of lectures. Given the structure of the
course, it is unlikely that alignment-to-class during any specific
lecture directly reflected learning success of lecture topics at the
end of the course. The first viewing of a course lecture, like the
first reading of a textbook chapter, is just the beginning of a
learning process that includes repetition and practice. Further-
more, only a fraction of course lecture segments (~1/7 of total)
was shown to student participants in the scanner, while
performance was measured using an exam deliberately designed
to span the entire course. Therefore, to explain the predictive
power of alignment-to-class, we need to go beyond lecture-
specific effects. We submit that neural alignment to common
patterns reflects the online, moment-to-moment process of
learning within individuals. Furthermore, the results indicate
that monitoring such a process can predict to some extent the
outcome of the learning process. This claim is supported by the
finding that it is possible to reliably predict learning outcomes
from neural activity during the early weeks of the course
(Supplementary Fig. 1).

Class patterns reflect expert patterns. To understand why
alignment with the class leads to improved performance, we need
to consider what shared class patterns may reflect. One possibility
is that these patterns reflect group knowledge. According to this
view, when individual patterns are averaged and idiosyncratic
differences cancel out, what emerges is a good approximation of
an ideal canonical representation. We would like to suggest this is
analogous to a “central limit theorem” of knowledge: the mean is
a reflection of the fact that most students, most of the time, follow
the lecture as intended: what they share is the correct inter-
pretation of course material. Similar ideas have been con-
ceptualized as the wisdom of crowds. On the other hand, in a
class where the norm is to struggle with the material, rather than
understand it well, common response patterns may not emerge.
Another caveat is that common misunderstandings would also be
reflected in the common pattern. These misunderstandings,
however, would not be shared by experts, resulting in high

Table 3 Alignment-to-experts is positively correlated with
alignment-to-class during recaps and during final exam.

Region of interest (ROI) Corr. alignment-to-class and alignment-
to-experts

Recap videos Exam

Angular gyrus 0.47** 0.49**
Ant. cingulate (ACC) 0.13** 0.81**
Hippocampus 0.08* 0.47**
Post. sup. temporal gyrus 0.25** 0.49**
Precuneus 0.43** 0.67**
Amygdala 0.09* 0.37**
Early auditory 0.12** 0.74**
Early visual 0.63** 0.49**

Correlation between alignment-to-class and alignment-to-experts is shown during lectures and
during the exam. Results are shown in DMN ROIs as well as in control regions (text in italics) in
sensory cortex (visual, intracalcarine cortex; auditory, Heschl’s gyrus) and in subcortex
(amygdala). Asterisks denote significant correlation (one-sided permutation test, corrected
across ROIs). *p < 0.05, **p < 0.01, n.s. not significant.
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alignment across students but low alignment between students
and experts.

We hypothesized that canonical class patterns, reflecting
successful learning, would match expert patterns. We tested this
hypothesis during recaps (short summaries of the lecture videos,
shown just prior to the exam) and during the exam. Our findings

confirmed that alignment-to-class and alignment-to-experts were
positively correlated across large swaths of the cerebral cortex,
including in DMN regions (Fig. 3). The tight link between
alignment-to-class and alignment-to-experts suggests that stu-
dents and experts may converge on a single set of shared neural
states. However, we observed substantial variability in correlation
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magnitude between these two alignment measures across cortical
regions and between tasks (Table 3). We speculate that these
differences could be linked to the different nature of the tasks
(passive viewing of recap videos and active generation of verbal
responses during the exam). Nevertheless, the factors contribut-
ing to this variability remain unknown at this point.

Alignment tracks understanding of specific topics. In direct
support of our hypothesis, we found that alignment and learning
outcomes were correlated on a fine-grained, question-by-question
basis, within individual students. Our results show that during the
exam, alignment-to-experts and alignment-to-class were both
positively correlated with question scores (Fig. 4). Importantly,
these results were specific to the neural patterns observed in the
experts for each particular question and thus were robust to
individual differences. In other words, our results could not
emerge due to some students being better learners than others, or
having better working memory, for example. The effects tested
here could only emerge if, in individual students, answers that
evoked better alignment-to-experts obtained higher scores and
vice versa.

To our knowledge, this is the first demonstration of shared
structure in neural responses across individuals during open
question answering. Formulating an answer required participants
to call upon their memory and understanding of question-specific
concepts, as well as more general cognitive processes such as
language production. Importantly, exam questions were highly
complex and required integrative answers, aimed at assessing
conceptual understanding and making it difficult to account for
students’ performance based on subsequent memory effects or
rote recall alone. The correlation of alignment and performance
emerged most strongly in medial DMN regions, suggesting that
the aligned neural patterns in these areas supported introspection
and memory (Fig. 6b). It is therefore possible that successful
alignment reflected understanding, particularly in light of the
body of work linking similarity in DMN regions to better
understanding of narratives21,22. This opens up the future
possibility of using alignment to assess learning success, offering
a different perspective than traditional performance measures.

Learning the right “knowledge structure”. The more abstract a
concept, the less it is grounded in physical reality. This has posed
a challenge to teachers, who need to build a structure of inter-
related ideas from the ground up. In a course like Introduction to
Computer Science, the understanding of basic concepts (e.g.
algorithms) later facilitates the introduction of more advanced
theoretical concepts (e.g. intractability). The alignment of
knowledge structures across students provides a fine-grained
measure of success in learning-specific topics. It shows how each
topic is grounded in others, revealing the interaction between
mental representations. This result could therefore allow

examining understanding in individual learners in high resolu-
tion. While same-question alignment-to-class could show, for
example, that the concept of intractability was not well under-
stood, knowledge structure alignment could show that the
underlying reason is difficulty with the more basic concept of
recursion.

Together with our same-question results, the positive correla-
tion between knowledge-structure alignment and exam perfor-
mance provides key support for our hypothesis (Fig. 5 and
Table 2). The correlation between alignment-to-class during
lectures and exam performance, discussed above, could be
explained in terms of coarse-grained individual-difference vari-
ables, even if there is no direct link between alignment-to-class
and learning outcomes (e.g., conscientious students may show
high alignment-to-class during lectures because they closely
attend to videos, and obtain good exam scores because they study
a lot outside of class, leading to a correlation between alignment-
to-class and exam performance). Crucially, the analyses relating
same-question alignment and knowledge-structure alignment to
performance on specific exam questions were conducted within-
subjects, and thus the results of these analyses cannot be
explained in terms of differences between participants.

Our results further show that, even at the end of the course,
students’ degree of knowledge structure convergence to experts
did not predict students’ question-answering accuracy. A likely
cause of this null result is lack of power (fewer experts than
students in our dataset). However, an alternative explanation is
that alignment to novice peers is actually a better measure of
learning than alignment to experts, even when power is matched
between these measures. This could also account for the stronger
student-to-class effects found in our same-question analysis
(Table 2 and Fig. 4d). One reason for this could be that experts’
grasp of course material is more holistic, drawing on their
broader understanding of the field, and therefore qualitatively
different from that of students. In this case, the class average
could provide a unique window into the neural state best
associated with successful learning. Resolving this issue would
require conducting power-matched comparisons between stu-
dents and experts. However, if this hypothesis is substantiated, it
would call for a reconsideration of the traditional focus on expert-
like thinking in expertise research in favor of group-like thinking
among learners.

In sum, these results show that the set of relationships between
mental representations of abstract concepts is behaviorally
relevant, and point to medial DMN regions as key nodes
supporting these representations. A promising direction for
future work lies in leveraging recent methodological advances
(e.g., in language modeling and network science methods) to
track the development of students’ knowledge structure during
learning36–38. These methods could make it possible to delineate
the exact relationship between student and expert knowledge
structures in the DMN.

Fig. 4 Same-question alignment during the exam correlates with performance. a Left, student and class patterns are correlated on a question-by-
question basis to derive alignment-to-class during exam. Right, student and expert patterns are similarly correlated to derive alignment-to-experts.
b Within-subject correlation between alignment and exam score in a single ROI, in a single student. Violet dots represent individual exam questions. Left,
correlation between alignment-to-class and exam score. Right, correlation between alignment-to-experts and exam score. c Within-subject correlation
between alignment and exam score in a single ROI, trendlines for all students shown. Red, the trendline of the student shown in panel b. Black, mean across
all students. Left, correlation between alignment-to-class and exam score. Right, correlation between alignment-to-experts and exam score. Asterisks
denote significant correlation (one-sided permutation test, corrected), *p < 0.05, **p < 0.01. For all ROI analysis results, see Table 2. d Correlation across
the cortex, searchlight analysis results shown. Voxels showing significant correlation are shown in color (one-sided permutation test, p < 0.05, corrected).
Left, correlation between alignment-to-class and exam score. Right, correlation between alignment-to-experts and exam score. Control analyses for
response length are shown in Supplementary Fig. 2a and 2b. Note the correspondence between the two maps in major DMN nodes on the medial surface.
LH left hemisphere, RH right hemisphere, Ant. anterior, Post. posterior.
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A key role for medial DMN regions during learning. The sig-
nificance of DMN cortical structures in our results highlights the
role these regions play during key stages of the learning process,
from first exposure to course video lectures to review of learned
material (recap videos) and, finally, question answering during
the exam (Fig. 6). Effects in these regions were robust, emerging

for both alignment measures (to class and to experts). These
findings are in line with previous work that localized behaviorally
relevant, memory-related shared representations to these
areas21,22. They are also consistent with earlier findings that
specific patterns of activity during memory encoding in DMN
regions predicted recall performance29, as well as with a recent
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report of hippocampal changes triggered by learning the struc-
tures and names of organic compounds39. The PM cortical sys-
tem plays a key role in episodic memory40 as well as forming part
of the DMN. However, studies that examined the neuronal cor-
relates of math and science have generally highlighted cortical
areas outside the DMN. For example, parietal and frontal regions
have been shown to play a key role in mathematical
cognition41,42. In physics, concepts such as gravity and frequency
have each been associated with a distinctive set of cortical regions,
mostly on the lateral cortical surface24, and recent work using
multivariate methods has localized representations of physics
concepts to dorsal fronto-parietal regions and ventral visual
areas15. One way to account for these apparent discrepancies and
for the prominence of DMN regions in our outcome-based results
is to consider the likely role of different cortical regions in
learning. While specific types of cognitive operations may well be
subserved by distinct sets of cortical regions, long-term learning
requires forming the correct neural representations, encoding
them in memory and retrieving them in the right context, all
hallmarks of the DMN and its associated structures.

An unexpected finding is that, during lectures, we also
observed correlations between exam scores and alignment-to-
class in early sensory areas (Fig. 2 and Table 2). A possible
explanation for such correlations during lectures is that these
correlations reflected top-down effects that interacted with the
way students processed visual and auditory information (for
example, it is possible that stronger learners attended to specific
details in the lectures video which were missed by less attentive
students).

Limitations. Our results were derived from scanning a cohort of
students enrolled in a single course at a single campus. Further
research is required in order to ensure that they generalize to
other domains and learning settings. Although we see no a priori
reason why our findings should be limited to any particular type
of course (e.g. courses in STEM, or introductory courses), or a
particular type of college, further research is required to rule out
these possibilities. Another limitation concerns the relatively
small number of participants: our longitudinal design allowed us
to collect a large amount of data (>3 h of functional scans) per
student participant, but limited the number of participants that
we could run given available scanning resources. Although the
number of student participants in the current study is in line with

previous studies from our group21,43,44, it may have limited our
ability to detect smaller effects. To determine how much lecture
data were required to obtain robust correlations with exam scores,
we conducted a power analysis (Supplementary Results and
Supplementary Fig. 1) that simulated a situation where scanning
was halted after a single lecture segment, two segments, and so
forth. Importantly, while some cortical regions in the DMN
showed a robust correlation between alignment-to-class and
exam scores given relatively small amounts of data, other cortical
regions only showed a robust correlation given the entire dataset.
It is possible that even more regions would have shown significant
effects if we had tested more participants or collected more data
per participant. The silver lining of this result is that simpler and
shorter experimental designs than those employed here may be
sufficient to study real-world learning effects in DMN regions.
Finally, like other neural measures, alignment between indivi-
duals likely reflects multiple contributing factors. These could
include similarities in students’ educational background and
familiarity with the teaching method. Mapping the different
factors and their unique contributions remains a topic for
future work.

Methods
Participants and stimuli. Twenty-four “student” and five “expert” participants (11
females) were recruited for the study. All participants were right handed, had
normal or corrected-to-normal vision and hearing, and reported no learning dis-
abilities. All except one expert were native English speakers. Student participants
reported having no prior knowledge or experience in computer science. Prior to
scanning, all students completed the course placement exam (described under
“Stimuli”) in written form and received 0 out of 3 points on all questions (see
grading details below). Experts all had an undergraduate or graduate degree in
computer science and reported having significant programming experience as well
as knowledge of introduction to computer science course material (≥6 on a 7-point
Likert scale). Participants received monetary compensation for their time. The
study complied with all relevant ethical regulations for work with human parti-
cipants and informed consent was obtained in accordance with experimental
procedures approved by the Institutional Review Board at Princeton University.

Students were enrolled in COS 126: Computer Science—An Interdisciplinary
Approach (lectures available at informit.com/title/9780134493831) at Princeton
University and were taking the course for the first time. The course sets out to teach
basic principles of computer science in the context of scientific, engineering, and
commercial applications. It uses a “flipped” classroom model, with students
viewing lecture videos on their own schedule and interacting with course staff in
precepts and class meetings. All students took the course for credit and participated
in the course normally, with the exception that they were asked to view part of the
lecture videos (~3 h out of ~21 h in total) in the scanner. Participants were asked
not to view these lecture videos online before the scans. Students were scanned
every 2–3 weeks during a single semester (Fig. 1). Four students dropped the course
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and were excluded from the experiment. Two student datasets were incomplete
(one student skipped scan 3; one student’s exam scan data was not collected due to
experimenter error). One expert did not complete the exam. The final sample
consisted of 20 datasets collected from undergraduate students (18 complete) and
five expert datasets (four complete). No statistical methods were used to
predetermine sample sizes. Our student sample size is similar to those reported in
previous publications from our group21,43,44.

Stimuli included video lectures, recaps, and a final exam, shown throughout a
series of six scans. During each of the first five scans, students watched
3–5 segments of course lecture videos that were required viewing for the following
week (mean segment length 9 min, total of ~40 min shown in each scan, total of
21 segments in all scans). At the end of each scan, students were given a set of
questions about the lecture (question data not analyzed in the current manuscript).
In addition, on scans 3–5, students were shown two 3-min recap videos,
summarizing the previous two lectures shown (these data were not analyzed in the
current manuscript). On the final scan, students watched all five 3-min recap
videos, each summarizing a single lecture (“recaps”). This was followed by an exam
that required verbal responses. The same stimuli were shown to all students.
Experts underwent the final scan only. Each lecture segment and recap was shown
in a separate scanner run. At the beginning and end of each run, we appended
20–30 s of unrelated “filler” audiovisual clips (from YouTube “oddly satisfying”
compilations, featuring, for example, objects being assembled neatly). Filler clips
were similarly added in previous studies from our group21,25. This was done
because the stimulus onset may elicit a global arousal response, which could add
noise to the analysis. To avoid this, scan data collected during fillers, as well as
during the first 12 s of each video, were omitted from analysis. Exam stimuli
consisted of 16 written questions, shown in fixed order. We used the course
placement exam, developed by course staff for the benefit of students wishing to
demonstrate proficiency in course material without taking it. Questions were
designed to span the breadth of material covered in the course; some required
distilling large concepts into simple explanations and others were more practical.
Exam scores were not used by course staff to assess students’ performance. The
same exam was used to assess students’ knowledge prior to scanning (in written
form) and on the final scan (with verbal responses).

Experimental procedures. Participants were asked to watch lecture videos as they
normally would. Lecture videos were shown at normal speed (first scan) or slightly
accelerated (1.15× speed, scans 2–5, accelerated for all participants at their request).
Stimuli were projected using an LCD projector onto a rear-projection screen
located in the scanner bore and viewed with an angled mirror. PsychoPy2 was used
to display the stimuli and synchronize them with MRI data acquisition45. Audio
was delivered via in-ear headphones (Sensimetrics S14), and the volume was
adjusted for every participant before each scan. Video monitoring was used to
monitor participants’ alertness in about 40% of scans at random (Eyelink, SR
Research). Monitoring showed that no participants fell asleep during the experi-
ment. Verbal responses to exam questions were recorded using a customized MR-
compatible recording system (FOMRI III, OptoAcoustics). Motion during speech
was minimized by instructing participants to remain still and by stabilizing par-
ticipants’ heads with foam padding, as in previous studies from our group22,25,46.
Participants indicated end-of-answer using a handheld response box (Current
Designs).

No outside resources were available during the videos or the exam, and students
could not take notes. No feedback was provided to participants during the exam.
The exam was self-paced with a “Please Wait” text slide presented for 12 s between
questions. Question text was shown for the entire length of the answer at the center
of the screen, and participants confirmed they could read it easily (see
Supplementary Text for exam questions). Participants could start giving a verbal
answer 10 s after question onset, indicated by the appearance of a countdown clock
at the bottom of the screen (90 s per question; no time-outs were recorded). Data
collected between questions and during the first 8 s of each question were truncated
to avoid including non-question responses. Verbal responses to exam questions
were anonymized and transcribed by two of the authors (M.M. and H.H.) using
open source software (Audacity, www.audacityteam.org). Transcripts were then
scored by two independent raters (teaching assistants on the course staff) on a scale
of 0–3, and the mean was taken. Written exams taken by the students prior to
scanning were rated in a similar way. The median score for experts was 85.4 out of
100 (range 69–100, s.d. 14.2). Expert responses rated below 2 were omitted from
analyses (6 out of 64 responses in total). This was done to ensure expert brain
activity patterns reflected correct answers. No student responses were omitted.
Total exam scores (sum of all 16 questions) were normalized to a standard
0–100 scale.

fMRI acquisition. MRI data were collected on two 3-T full-body scanners (Siemens
Skyra and Prisma) with 64 channel head coils. Scanner-participant pairing was
kept constant throughout the experiment. Functional images were acquired using a
T2*-weighted echo-planar imaging pulse sequence (TR 2000 ms, TE 28 ms, flip
angle 80°, FOV 192 × 192 mm2, whole-brain coverage with 38 transverse slices, 3
mm3 voxels, no gap, GRAPPA iPAT 2). Anatomical images were acquired using a
T1-weighted MPRAGE pulse sequence (1 mm3 resolution).

fMRI preprocessing. Preprocessing was performed in FSL 6.0.1 (http://fsl.fmrib.
ox.ac.uk/fsl), including slice time correction, motion correction, linear detrending,
high-pass filtering (100 s cutoff), and gaussian smoothing (6 mm FWHM)47,48.
Functional volumes were then coregistred and affine transformed to a template
brain (MNI 152, Montreal Neurological Institute). Motion parameters (three
translations and three rotations) were regressed out from functional data using
linear regression. All calculations were performed in volume space. Data were
analyzed using Python 3 (www.python.org) and R (www.r-project.org), using the
Brain Imaging Analysis Kit (http://brainiak.org49) and custom code. Eight ROIs
were anatomically defined using the probabilistic Harvard-Oxford cortical and
subcortical structural atlases50. ROIs were defined across major DMN nodes in the
angular gyrus, precuneus, and ACC, as well as in the hippocampus and posterior
superior temporal gyrus, and control regions in early visual cortex (intracalcarine
sulcus), early auditory cortex (Heschl’s gyrus) and in subcortex (amygdala).
Bilateral ROIs were created by taking the union of voxels in both hemispheres. A
liberal threshold of >20% probability was used. To avoid circularity, all voxels
within the anatomical mask were included and no functional data were used to
define ROIs. Projections onto a cortical surface for visualization purposes were
performed, as a final step, with Connectome Workbench51.

Alignment during lectures. Multi-voxel BOLD patterns during lectures were
obtained as follows. First, we used 30-s non-overlapping bins to extract multi-voxel
activity (spatial alignment-to-class, Table 1). This yielded a single pattern for every bin
in every participant. Then, to examine spatial similarities between participants during
videos, we employed an inter-subject pattern correlation framework, which has been
successfully used to uncover shared memory-related responses21,22,28. For each pat-
tern in each student, we obtained an alignment-to-class measure by directly com-
paring the student pattern and the mean class pattern (average across all other
students), using Pearson correlation. Then, correlation values were averaged within
video segments. Throughout the manuscript, correlation values were transformed by
Fisher’s z prior to averaging and then back-transformed in order to minimize bias52.
Finally, we averaged across segments to obtain a single alignment-to-class measure for
every student during all lectures. Alignment was derived independently for each ROI
and each searchlight. We then used alignment to predict student performance in the
placement exam. To this end, we used a between-participants design, correlating
alignment and overall exam scores (mean across questions). Statistical significance
values were derived using a one-sided permutation test, with a null distribution
created for each searchlight by shuffling score labels 1000 times.

Alternative spatial alignment-to-class measures (Supplementary Table 1) were
calculated by changing the length of the time bin used. This was done to test the
effects of our arbitrary choice of 30-s time bins for calculating alignment. We used
10-s non-overlapping bins (averaging over 5 TRs) and 2-s bins (calculating
alignment in every TR). We also calculated a temporal alignment-to-class measure
using inter-subject correlation (ISC). This was done by taking the mean of voxel
time courses in each ROI in each student (mean across voxels, resulting in a single
average time course) and correlating it with the mean class response (average
across all other students, resulting in a single time course)20,28.

Power analysis across lectures. We defined a “stable prediction index” across
the cortex by considering the effect of information accumulation throughout
the lectures on prediction success. To this end, we used the alignment-to-class
values calculated for each one of our 21 individual lecture segments. We
started by correlating exam scores with alignment-to-class in the first video (scan 1,
segment 1). We then proceeded in sequence, correlating exam scores with the mean
of alignment-to-class values across segments 1 and 2, and finally with the mean
across all lecture segments. We performed this process for every cortical voxel
using searchlight, to obtain a series of 21 r values for each voxel (one for each
added segment). As before, a p value was calculated for each r value using a one-
sided permutation test by randomizing score labels. Using a liberal threshold of p <
0.01 (uncorrected), we considered all voxels that showed a significant correlation
between exam scores and alignment-to-class as calculated above. Lowering the
threshold allowed us to include all potentially predictive voxels. For each voxel, we
then defined the stable prediction index as the number of segments required to (i)
reach a significant correlation between exam score and alignment and (ii) maintain
significance for all subsequently added segments (no “breaks”). By design, a high
index number (21) showed that data from all lecture segments were required to
achieve a significant correlation and thus reflected late prediction. In contrast, a low
index number (1) showed that significant prediction could be obtained by con-
sidering data from the first lecture segment alone, affording early prediction of
exam score. Index values were calculated independently for each ROI and each
searchlight.

Correlation between alignment-to-class and alignment-to-experts. Alignment-
to-class during recaps was derived similarly to lectures. For each 30-s time bin in
each student, we obtained an alignment-to-class measure by directly comparing the
student pattern and the mean class pattern (average across all other students),
using Pearson correlation. In addition, we obtained an alignment-to-experts
measure by comparing the student pattern and the mean pattern across experts
(“canonical” pattern). We thus obtained an alignment-to-class and alignment-to-
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experts pattern for each student, in each bin. We used Pearson correlation to
correlate these alignment measures using a between-participants design, obtaining
a single correlation value in each time bin. Finally, we took the mean across all time
bins within each recap, and then across recaps. Statistical significance values were
derived using a one-sided permutation test, with a null distribution created for each
time bin by shuffling student labels 1000 times. Correlation between alignment-to-
class and alignment-to-experts during the exam was performed in an analogous
manner, with questions used in place of time bins (see below).

Neural alignment to experts during the exam. Students’ and experts’ multi-voxel
activity patterns during the exam were obtained by taking the mean fMRI BOLD
signal during each question, in each participant. Each spatial pattern thus reflected
neural responses associated with the specific subset of course topics included in
that question. To compare student and class patterns, we again used the inter-
subject pattern correlation framework. We derived an alignment-to-class score by
correlating each question pattern in each student with the class average of the same
question (mean across all other students) and then taking the mean across all
students (Fig. 4a). We performed this on a question-by-question basis to obtain a
vector of 16 alignment-to-class values for each student (one value for each ques-
tion). Similarly, we derived an alignment-to-experts score by correlating each
question pattern in each student with the mean pattern across experts, and
obtained a vector of 16 alignment-to-expert values (one value for each question).
Alignment was derived independently for each ROI and each searchlight. We then
correlated alignment and question scores within students using Pearson correla-
tion, obtaining a single r-value for each student. Finally, we took the mean across
students. Statistical significance values were derived using a one-sided permutation
test. We created a null distribution for each student by shuffling score labels 1000
times and then compared the mean across students to the mean null distribution.

Knowledge structure alignment. We defined “knowledge structures” as similarity
matrices aimed at capturing the set of relationships between question representa-
tions. In the following, we describe how a student-specific knowledge structure was
constructed and correlated with a class-derived template and an expert-derived
template to derive (i) alignment-to-class and (ii) alignment-to-expert scores.
Finally, we describe how within-participant correlation was used to examine the
link between alignment and performance in individual students. First, we used the
canonical class average and expert average patterns calculated for each question
(see above) and constructed two templates. A class template was constructed by
correlating “canonical class” question patterns with each other. This yielded a 16
question × 16 question symmetric similarity matrix comprising the distances
between pairs of question patterns (r values) (Fig. 5a). Similarly, an expert template
was constructed by correlating “canonical expert” question patterns with each
other. This yielded two 16 question × 16 question symmetric similarity matrices
comprising the distances between pairs of question patterns (r values). We then
constructed a “knowledge structure” matrix for every student by correlating each
question pattern (in that student) with the template pattern of all other questions.
A single row in this structure thus represented the similarity between a student’s
neural response to a specific question and the template (class/expert) responses to
every other question. Next, we correlated student and template matrices, row by
row, excluding the diagonal, and obtained a question-by-question alignment score
for each student. For each student, we thus derived a vector of 16 alignment-to-
class values (one value for each question), and a vector of 16 alignment-to-expert
values. Lastly, we correlated alignment and question scores within students using
Pearson correlation, obtaining a single r value for each student, and took the mean
across students. A null distribution was created for each student and a one-sided
permutation test was used to determine statistical significance as before.

Intersection analysis. Intersection maps across data-driven searchlights were
created by examining statistically significant voxels across analyses (p < 0.05, cor-
rected). Figure 6a shows the intersection of the following maps: (i) correlation
between alignment-to-class during lectures and exam scores (shown in Fig. 2d), (ii)
correlation between alignment-to-class and alignment-to-experts during recaps
(shown in Fig. 3c), (iii) correlation between same-question alignment-to-class
during the final exam and exam score (shown in Fig. 4d, left panel), and (iv)
correlation between knowledge structure alignment-to-class during the exam and
exam score (shown in Fig. 5c). Figure 6b shows voxels in the intersection set of the
following maps: (i) correlation between same-question alignment-to-class during
the final exam and exam score (shown in Fig. 4d, left panel) and (ii) correlation
between same-question alignment-to-experts during the final exam and exam score
(shown in Fig. 4d, right panel).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data that support the findings of this study are available in OpenNeuro with
the identifier https://doi.org/10.18112/openneuro.ds003233.v1.2.0 (ref. 53). Source data
are provided with this paper.

Code availability
Analysis code is available on GitHub (https://github.com/me-sh/think_like_an_expert_paper).

Received: 12 June 2020; Accepted: 23 February 2021;

References
1. Feynman, R. P. What is science. Phys. Teach. 7, 313–320 (1969).
2. Bauer, A. J. & Just, M. A. in The Oxford Handbook of Neurolinguistics (eds.

de Zubicaray, G. I. & Schiller, N. O.) 518–547 (Oxford University Press,
2019).

3. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430
(2006).

4. O’Toole, A. J. et al. Theoretical, statistical, and practical perspectives on
pattern-based classification approaches to the analysis of functional
neuroimaging data. J. Cogn. Neurosci. 19, 1735–1752 (2007).

5. Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural
representational spaces using multivariate pattern analysis. Annu. Rev.
Neurosci. 37, 435–456 (2014).

6. Hsu, N. S., Schlichting, M. L. & Thompson-Schill, S. L. Feature diagnosticity
affects representations of novel and familiar objects. J. Cogn. Neurosci. 26,
2735–2749 (2014).

7. Mahon, B. Z. & Caramazza, A. What drives the organization of object
knowledge in the brain? Trends Cogn. Sci. 15, 97–103 (2011).

8. Musz, E. & Thompson-Schill, S. L. in The Oxford Handbook of
Neurolinguistics (eds. de Zubicaray, G. I. & Schiller, N. O.) 547–575 (Oxford
University Press, 2019).

9. Parkinson, C., Kleinbaum, A. M. & Wheatley, T. Spontaneous neural encoding
of social network position. Nat. Hum. Behav. 1, 1–7 (2017).

10. Haxby, J. V. et al. Distributed and overlapping representations of faces and
objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

11. Connolly, A. C. et al. The representation of biological classes in the human
brain. J. Neurosci. 32, 2608–2618 (2012).

12. Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity
analysis—connecting the branches of systems neuroscience. Front. Syst.
Neurosci. 2, 4 (2008).

13. Karuza, E. A., Emberson, L. L. & Aslin, R. N. Combining fMRI and behavioral
measures to examine the process of human learning. Neurobiol. Learn. Mem.
109, 193–206 (2014).

14. McCandliss, B. D. Educational neuroscience: the early years. Proc. Natl Acad.
Sci. USA 107, 8049–8050 (2010).

15. Cetron, J. S. et al. Decoding individual differences in STEM learning from
functional MRI data. Nat. Commun. 10, 2027 (2019).

16. Mason, R. A. & Just, M. A. Physics instruction induces changes in neural
knowledge representation during successive stages of learning. Neuroimage
111, 36–48 (2015).

17. Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S. & Keysers, C. Brain-
to-brain coupling: a mechanism for creating and sharing a social world.
Trends Cogn. Sci. 16, 114–121 (2012).

18. Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D. & Hasson, U. Coupled
neural systems underlie the production and comprehension of naturalistic
narrative speech. Proc. Natl Acad. Sci. USA 111, E4687–96 (2014).

19. Stephens, G. J., Silbert, L. J. & Hasson, U. Speaker–listener neural coupling
underlies successful communication. Proc. Natl Acad. Sci. USA 107,
14425–14430 (2010).

20. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject
synchronization of cortical activity during natural vision. Science 303,
1634–1640 (2004).

21. Chen, J. et al. Shared memories reveal shared structure in neural activity
across individuals. Nat. Neurosci. 20, 115–125 (2017).

22. Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A. & Hasson, U. How we
transmit memories to other brains: constructing shared neural representations
via communication. Cereb. Cortex 27, 4988–5000 (2017).

23. Cantlon, J. F. & Li, R. Neural activity during natural viewing of Sesame Street
statistically predicts test scores in early childhood. PLoS Biol. 11, e1001462
(2013).

24. Mason, R. A. & Just, M. A. Neural representations of physics concepts.
Psychol. Sci. 27, 904–913 (2016).

25. Nguyen, M., Vanderwal, T. & Hasson, U. Shared understanding of narratives
is correlated with shared neural responses. NeuroImage 184, 161–170 (2019).

26. Shinkareva, S. V., Malave, V. L., Just, M. A. & Mitchell, T. M. Exploring
commonalities across participants in the neural representation of objects.
Hum. Brain Mapp. 33, 1375–1383 (2012).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22202-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1922 | https://doi.org/10.1038/s41467-021-22202-3 |www.nature.com/naturecommunications 13

https://doi.org/10.18112/openneuro.ds003233.v1.2.0
https://github.com/me-sh/think_like_an_expert_paper
www.nature.com/naturecommunications
www.nature.com/naturecommunications


27. Yeshurun, Y. et al. Same story, different story: the neural representation of
interpretive frameworks. Psychol. Sci. https://doi.org/10.1177/
0956797616682029 (2017).

28. Nastase, S. A., Gazzola, V., Hasson, U. & Keysers, C. Measuring shared
responses across subjects using intersubject correlation. Soc. Cogn. Affect.
Neurosci. 14, 667–685 (2019).

29. Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J. & Burgess, N. Consolidation
of complex events via reinstatement in posterior cingulate cortex. J. Neurosci.
35, 14426–14434 (2015).

30. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57,
289–300 (1995).

31. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default
network: anatomy, function, and relevance to disease. Ann. N Y Acad. Sci.
1124, 1–38 (2008).

32. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with
construction. Trends Cogn. Sci. 11, 299–306 (2007).

33. Rugg, M. D. & Vilberg, K. L. Brain networks underlying episodic memory
retrieval. Curr. Opin. Neurobiol. 23, 255–60 (2013).

34. Cohen, S. S. et al. Neural engagement with online educational videos predicts
learning performance for individual students. Neurobiol. Learn. Mem. 155,
60–64 (2018).

35. Zhu, Y., Pan, Y. & Hu, Y. Learning desire is predicted by similar neural
processing of naturalistic educational materials. eNeuro https://doi.org/
10.1523/ENEURO.0083-19.2019 (2019).

36. Siew, C. S. Q. Applications of network science to education research:
quantifying knowledge and the development of expertise through network
analysis. Educ. Sci. 10, 101 (2020).

37. Bassett, D. S. & Mattar, M. G. A network neuroscience of human learning:
potential to inform quantitative theories of brain and behavior. Trends Cogn.
Sci. 21, 250–264 (2017).

38. Kenett, Y. N., Betzel, R. F. & Beaty, R. E. Community structure of the creative
brain at rest. NeuroImage 210, 116578 (2020).

39. Just, M. A. & Keller, T. A. Converging measures of neural change at the
microstructural, informational, and cortical network levels in the
hippocampus during the learning of the structure of organic compounds.
Brain Struct. Funct. 224, 1345–1357 (2019).

40. Ranganath, C. & Ritchey, M. Two cortical systems for memory-guided
behaviour. Nat. Rev. Neurosci. 13, 713–26 (2012).

41. Anderson, J. R., Betts, S., Ferris, J. L. & Fincham, J. M. Cognitive and
metacognitive activity in mathematical problem solving: prefrontal and
parietal patterns. Cogn. Affect Behav. Neurosci. 11, 52–67 (2011).

42. Dehaene, S., Molko, N., Cohen, L. & Wilson, A. J. Arithmetic and the brain.
Curr. Opin. Neurobiol. 14, 218–224 (2004).

43. Honey, C. J., Thompson, C. R., Lerner, Y. & Hasson, U. Not lost in translation:
neural responses shared across languages. J. Neurosci. 32, 15277–83 (2012).

44. Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural
responses to spoken and written narratives. J. Neurosci. 33, 15978–88 (2013).

45. Peirce, J. et al. PsychoPy2: experiments in behavior made easy. Behav. Res 51,
195–203 (2019).

46. Simony, E. et al. Dynamic reconfiguration of the default mode network during
narrative comprehension. Nat. Commun. 7, 1–13 (2016).

47. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for
the robust and accurate linear registration and motion correction of brain
images. Neuroimage 17, 825–41 (2002).

48. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith,
S. M. FSL. Neuroimage 62, 782–790 (2012).

49. Kumar, M. et al. BrainIAK: The Brain Imaging Analysis Kit. https://doi.org/
10.1093/jnci/djx058 (2020).

50. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–80 (2006).

51. Marcus, D. et al. Informatics and data mining tools and strategies for the
Human Connectome Project. Front. Neuroinform 5, 4 (2011).

52. Silver, N. C. & Dunlap, W. P. Averaging correlation coefficients: should
Fisher’s z transformation be used? J. Appl. Psychol. 72, 146–148 (1987).

53. Meshulam, M. Think Like an Expert. Snapshot 1.2.0. OpenNeuro. https://
openneuro.org/datasets/ds003233/versions/1.2.0.

Acknowledgements
The authors wish to thank Princeton COS 126 staff and in particular Robert Sedgewick,
Dan Leyzberg, Christopher Moretti, Kevin Wayne, Ibrahim Albluwi, Bridger Hahn,
Thomas Schaffner, and Rachel Protacio; Mona Fixdal and the McGraw Center for
Teaching and Learning; The Scully Center for the Neuroscience of Mind and Behavior;
Peter J. Ramadge; and members of the Norman and Hasson labs for fruitful discussions.
This study was supported by NIH Grant DP1-HD091948 to U.H. and by Intel Labs.

Author contributions
M.M., L.H., H.H., K.A.N. and U.H. designed the experiment. M.M., L.H., H.H., Y.-F.L.
and M.N. collected the data. M.M., K.A.N. and U.H. analyzed the data and wrote the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-22202-3.

Correspondence and requests for materials should be addressed to M.M.

Peer review information Nature Communications thanks Yoed Kenett, David Kraemer
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22202-3

14 NATURE COMMUNICATIONS |         (2021) 12:1922 | https://doi.org/10.1038/s41467-021-22202-3 | www.nature.com/naturecommunications

https://doi.org/10.1177/0956797616682029
https://doi.org/10.1177/0956797616682029
https://doi.org/10.1523/ENEURO.0083-19.2019
https://doi.org/10.1523/ENEURO.0083-19.2019
https://doi.org/10.1093/jnci/djx058
https://doi.org/10.1093/jnci/djx058
https://openneuro.org/datasets/ds003233/versions/1.2.0
https://openneuro.org/datasets/ds003233/versions/1.2.0
https://doi.org/10.1038/s41467-021-22202-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Neural alignment predicts learning outcomes in students taking an introduction to computer science course
	Results
	Prediction of learning outcomes from neural activity during lectures
	Neural alignment between students and experts
	Think like an expert: assessing learning success during exam using expert canonical responses
	Knowledge structure reflects learning in individual students
	Effects in DMN regions across tasks

	Discussion
	Neural alignment successfully predicts learning outcomes
	Class patterns reflect expert patterns
	Alignment tracks understanding of specific topics
	Learning the right “knowledge structure”
	A key role for medial DMN regions during learning
	Limitations

	Methods
	Participants and stimuli
	Experimental procedures
	fMRI acquisition
	fMRI preprocessing
	Alignment during lectures
	Power analysis across lectures
	Correlation between alignment-to-class and alignment-to-experts
	Neural alignment to experts during the exam
	Knowledge structure alignment
	Intersection analysis

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




