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A B S T R A C T

Connectivity hyperalignment can be used to estimate a single shared response space across disjoint datasets. We
develop a connectivity-based shared response model that factorizes aggregated fMRI datasets into a single
reduced-dimension shared connectivity space and subject-specific topographic transformations. These trans-
formations resolve idiosyncratic functional topographies and can be used to project response time series into
shared space. We evaluate this algorithm on a large collection of heterogeneous, naturalistic fMRI datasets ac-
quired while subjects listened to spoken stories. Projecting subject data into shared space dramatically improves
between-subject story time-segment classification and increases the dimensionality of shared information across
subjects. This improvement generalizes to subjects and stories excluded when estimating the shared space. We
demonstrate that estimating a simple semantic encoding model in shared space improves between-subject forward
encoding and inverted encoding model performance. The shared space estimated across all datasets is distinct
from the shared space derived from any particular constituent dataset; the algorithm leverages shared connec-
tivity to yield a consensus shared space conjoining diverse story stimuli.
1. Introduction

The developing infrastructure for data sharing (alongside evolving
incentives) has led to a proliferation of publicly available “open” neu-
roimaging data. Although still overshadowed by traditional task and
resting-state acquisitions, we are beginning to see more public data
collected during rich, naturalistic paradigms (e.g., Hanke et al., 2014,
2016; Taylor et al., 2017; DuPre et al., 2019). Although the neuroimaging
community unequivocally benefits from the increasing availability of
public data (Poldrack and Gorgolewski, 2014; Milham et al., 2018), this
trend introduces a challenge. Namely, datasets are often markedly het-
erogeneous—i.e., collected on different scanners, using different acqui-
sition parameters, with different samples of subjects—and require
sophisticated harmonization (e.g., Yamashita et al., 2019). Furthermore,
in the context of naturalistic stimuli (e.g., movie-watching, story--
listening), stimuli vary considerably from experiment to experiment.
Here we focus on a particular aspect of harmonization: finding a shared
functional response space across heterogeneous naturalistic datasets.

In order to fully realize the potential of “big” neuroimaging data for
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prediction and translational purposes, we need to obtain some level of
correspondence across individuals (Gabrieli et al., 2015; Dubois and
Adolphs, 2016; Woo et al., 2017). Typically, each individual brain is
spatially normalized to a standard space based on macroanatomical
features such as sulcal curvature (Fischl et al., 1999; Coalson et al., 2018).
However, fine-grained functional response topographies (e.g., Brett et al.,
2002; Duncan et al., 2009; Frost and Goebel, 2012; Haxby et al., 2014;
Zhen et al., 2015, 2017) and connectivity patterns (e.g., Langs et al.,
2016; Braga and Buckner, 2017; Gordon et al., 2017; Bijsterbosch et al.,
2019) are not tightly coupled to macroanatomical features and are
markedly idiosyncratic across individuals. Information encoded at this
finer scale may be inaccessible based on anatomical alignment alone
(Feilong et al., 2018; Kong et al., 2019). In order to leverage large vol-
umes of data for prediction in individuals, we need to resolve these idi-
osyncrasies in functional–anatomical correspondence. Hyperalignment is
a family of algorithms for normalizing functional data into a common
space by resolving topographic idiosyncrasies (Haxby et al., 2011; Gun-
tupalli et al., 2016). These methods hinge on functional commonalities to
drive normalization—typically a rich stimulus is used to evoke
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Table 1
Summarization of 10 benchmark story-listening fMRI datasets. Stimuli
comprised 10 spoken stories. In addition to the names of the stories, we use
abbreviated aliases in analysis and figures. Story durations are listed in
“minutes:seconds” format, and exclude any silence or music bookending the
story itself. The number of TRs for each story also excludes any TRs corre-
sponding to silence or music; a 1.5-second TR was used for all acquisitions. The
sample size listed for each story corresponds to the number of subjects used for
subsequent analyses after applying exclusion criteria (see Participants section).
The “total duration” is simply the sum of story durations; i.e., the duration of
unique stimuli across datasets (not accounting for the number of subjects in each
dataset). The “total duration across subjects” takes into account the number of
subjects acquired for each story and reflects the grand total duration if all data
were concatenated across both subjects and stories. Note that “Slumlord” and
“Reach for the Stars One Small Step at a Time” are distinct stories but were
presented one after the other in a single scanning run. The first six stories—from
“Pie Man” to “The 21st Year”—were collected on a Siemens Skyra, whereas the
remaining four—from “Pie Man (PNI)” to “The Man Who Forgot Ray Bradbur-
y”—were collected on a Siemens Prisma. The “Pie Man (PNI)” and “Running from
the Bronx (PNI)” stimuli were recorded while the speaker underwent an fMRI
scan, and those have relatively low audio quality. The “Pie Man (PNI)” stimulus
recorded at PNI differs from the original “Pie Man” stimulus recorded at a live
storytelling event. See Fig. S1 for more details on which subjects received which
story stimuli.

Story Alias Duration TRs Subjects

“Pie Man” pieman 07:03 282 46
“Pretty Mouth and Green My
Eyes”

prettymouth 11:17 451 19

“Milky Way” milkyway 06:50 273 16
“Slumlord”, “Reach for the
Stars One Small Step at a
Time”

slumlordreach 29:26 1,177 16

“It’s Not the Fall That Gets
You”

notthefall 09:45 390 18

“The 21st Year” 21styear 55:38 2,225 24
“Pie Man (PNI)” pieman (PNI) 06:57 278 39
“Running from the Bronx
(PNI)”

bronx (PNI) 09:21 374 40

“I Knew You Were Black” black 13:21 534 40
“The Man Who Forgot Ray
Bradbury”

forgot 13:57 558 40

Total duration: 2.7 h 6,542
Total duration across subjects: 3.1 days 179,093
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stereotyped, time-locked response trajectories across subjects. However,
recent work by Guntupalli et al. (2018) demonstrates that functional
connectivity can be used to effectively drive functional normalization
absent any shared stimulus. Each voxel’s participation in functional
networks elsewhere in the brain can provide a shared functional signa-
ture sufficient for resolving topographic idiosyncrasies. One important
product of this development, which the authors examined in detail, is the
extension of hyperalignment to resting-state functional connectivity. In
this case, the “rest” task yields rich and consistent enough connectivity
patterns to support functional normalization. A separate, largely unex-
plored avenue is that connectivity hyperalignment may allow us to define
a single common space across distinct naturalistic stimuli or tasks.

Here, we use a variant of connectivity-based hyperalignment (Gun-
tupalli et al., 2018) to showcase the utility of aggregating disjoint natu-
ralistic story-listening datasets into a single, shared response space. For a
given region of interest (ROI), we first compute intersubject functional
correlations (ISFC; Simony et al., 2016) between each voxel and a set of
parcels tiling the cortex (i.e., connectivity targets; Glasser et al., 2016).
We then apply the shared response model (SRM; Chen et al., 2015) to
these connectivity patterns to find a reduced-dimension connectivity
space shared across both subjects and stimuli. Critically, in the context of
a task such as listening to spoken stories, we expect these coarse con-
nectivity patterns to be well-preserved across subjects and stimuli. The
SRM effectively decomposes the connectivity data across all datasets into
a shared connectivity space, and a set of subject-specific transformation
matrices that resolve topographic idiosyncrasies. Although the shared
model is derived from functional connectivity, the subject-specific
topographic transformations can be used to project response time se-
ries into shared space. We benchmark this algorithm on a large, hetero-
geneous collection of story-listening functional MRI datasets assembled
over the course of approximately seven years. This data collection com-
prises 10 unique auditory story stimuli across 300 scans with 149 unique
subjects. We evaluate the shared space using between-subject time-seg-
ment classification (e.g., Haxby et al., 2011), temporal and spatial
intersubject correlations (e.g., Nastase et al., 2019a), and
between-subject semantic model-based encoding and decoding (e.g.,
Huth et al., 2016).

2. Materials and methods

2.1. Participants

We aggregated fMRI datasets collected between 2011 and 2018
comprising 10 story stimuli and 149 subjects totalling 300 scans (mean
age ¼ 22.6 years, SD¼ 6.25, range: 18–53; 84 reported female). Subjects
with behavioral comprehension scores (where applicable) lower than
25% accuracy were excluded. Furthermore, we computed leave-one-
subject-out ISCs in a left early auditory cortex ROI (Glasser et al.,
2016) for all subjects in each dataset at temporal lags ranging from�100
to 100 TRs and excluded any subjects with a peak ISC at lags exceeding
�1 TR. Here we briefly summarize the resulting sample size and de-
mographics for each dataset, and point to previously published work
using these data (see Table 1). The datasets are named according to the
names of the corresponding story stimuli, with abbreviated aliases used
in analysis and figures. The “Pie Man” data (alias: pieman) comprised 46
subjects (mean age ¼ 22.4 years, SD ¼ 3.8, 23 reported female; (Simony
et al., 2016). The “Pretty Mouth and Green My Eyes” data (alias: pretty-
mouth) comprised 19 subjects (mean age ¼ 20.2 years, SD ¼ 2.1, 9 re-
ported female) from the “cheating” condition of the context manipulation
described by Yeshurun and colleagues (2017b). The “Milky Way” data
comprised 16 subjects (mean age ¼ 19.9 years, SD ¼ 1.5, 7 reported
female) from one condition (Story1) of the word-substitution manipu-
lation described by Yeshurun and colleagues (2017a). The previously
unpublished “Slumlord” and “Reach for the Stars One Small Step at a
Time” stories were presented in a single scanning run (alias: slumlor-
dreach) and comprised 16 subjects (mean age ¼ 21.1 years, SD ¼ 2.4, 8
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reported female). The “It’s Not the Fall That Gets You” data (alias: not-
thefall) comprised 18 subjects (mean age ¼ 21.4 years, SD ¼ 2.5, 8 re-
ported female) from the "intact" condition described by Chien and Honey
(2020). The “The 21st Year” data (alias: 21styear) comprised 24 subjects
(mean age ¼ 23.3 years, SD ¼ 6.7, 14 reported female) and described by
Chang et al. (2020). Finally, two stories recorded at the Princeton
Neuroscience Institute (PNI) served as stimuli: “Pie Man (PNI)” (alias:
pieman (PNI)) and “Running from the Bronx (PNI)” (alias: bronx (PNI)).
The “Pie Man (PNI)” data comprised 39 subjects (mean age ¼ 23.3 years,
SD ¼ 7.7, 28 reported female). The “Running from the Bronx (PNI)”, “I
Knew You Were Black” (alias: black), and “The Man Who Forgot Ray
Bradbury” (alias: forgot) data were collected at the same time and
comprised roughly the same sample of 40 subjects (mean age ¼ 23.3
years, SD¼ 7.6, 29 reported female; Lin et al., 2019). Overall, 83 subjects
(56% of the total sample) contributed a single scan, 22 (15%) contributed
to two scans, 5 (3%) contributed three scans, 37 (25%) contributed four
scans (~40 subjects were acquired for the four “pieman (PNI),” “bronx
(PNI),” “forgot,” and “black” stories by design), and 2 (1%) contributed
five scans (Fig. S1). All data used herein are publicly available as part of
the “Narratives” collection (Nastase et al., 2019b) on the OpenNeuro
repository: https://openneuro.org/datasets/ds002345.
2.2. Stimuli and design

Story stimuli were presented auditorily and ranged from~7 to 56min

https://openneuro.org/datasets/ds002345


Fig. 1. Regions of interest. Four large cortical regions roughly capturing the
processing hierarchy for language and narrative comprehension were defined
according to a multimodal parcellation (Glasser et al., 2016): early auditory
cortex (EAC), auditory association cortex (AAC), temporo-parieto-occipital
junction (TPOJ), and posterior medial cortex (PMC).
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in duration (summarized in Table 1). The stimuli included professional
storytellers performing for a live audience, actors performing written
narratives, and authors reading their written works. For each dataset, TRs
corresponding to the story stimulus were isolated by discarding any TRs
corresponding to silence or music (padding the beginning or end of a
run). In general, participants were instructed to maintain fixation on a
centrally-presented crosshair or dot and listen to the story. Behavioral
questionnaires assessing narrative comprehension were acquired for the
“Pretty Mouth and GreenMy Eyes”, “MilkyWay”, “Slumlord” and “Reach
for the Stars One Small Step at a Time”, “The 21st Year”, “Pie Man (PNI)”,
“Running from the Bronx (PNI)”, “I Knew You Were Black”, and “The
Man Who Forgot Ray Bradbury”. These comprehension scores were used
to initially exclude poor-performing or noncompliant participants (par-
ticipants with accuracies lower than 25%), but were not used in subse-
quent analyses.

2.3. Image acquisition

MRI data for the “Pie Man”, “Pretty Mouth and Green My Eyes”,
“MilkyWay”, “Slumlord”, “Reach for the Stars One Small Step at a Time”,
“It’s Not the Fall that Gets You”, and “The 21st Year”were collected using
a 3T Siemens Skyra with a 20-channel phased-array head coil. Functional
blood-oxygenation-level-dependent (BOLD) images were acquired in an
interleaved fashion using gradient-echo echo-planar imaging with an in-
plane acceleration factor of 2 using mSENSE: TR/TE ¼ 1500/28 ms, flip
angle ¼ 64�, bandwidth ¼ 1445 Hz/Px, in-plane resolution ¼ 3 � 3 mm,
slice thickness¼ 4 mm, matrix size ¼ 64 � 64, FoV ¼ 192 � 192 mm, 27
axial slices with roughly full brain coverage and no gap, ante-
rior–posterior phase encoding. At the beginning of each run, three
dummy scans were acquired and discarded by the scanner to allow for
signal stabilization. T1-weighted structural images were acquired using a
high-resolution single-shot MPRAGE sequence with an in-plane acceler-
ation factor of 2 using GRAPPA: TR/TE/TI ¼ 2300/3.08/900 ms, flip
angle ¼ 9�, bandwidth ¼ 240 Hz/Px, in-plane resolution 0.859 � 0.859
mm, slice thickness 0.9 mm, matrix size ¼ 256 � 256, FoV ¼ 172.8 �
219.9 � 219.9 mm, 192 sagittal slices, ascending acquisition, no fat
suppression.

MRI data for the “Pie Man (PNI)”, “Running from the Bronx (PNI)”, “I
Knew You Were Black”, and “The Man Who Forgot Ray Bradbury” stores
were collected using a 3T Siemens Prisma with a 64-channel head coil.
Functional images were acquired in an interleaved fashion using
gradient-echo echo-planar imaging with a multiband acceleration factor
of 3 and no in-plane acceleration: TR/TE 1500/31 ms, flip angle ¼ 67�,
bandwidth ¼ 2480 Hz/Px, in-plane resolution ¼ 2.5 � 2.5 mm, slice
thickness 2.5 mm, matrix size ¼ 96 � 96, FoV¼ 240� 240 mm, 48 axial
slices with full brain coverage and no gap, anterior–posterior phase
encoding, three dummy scans. T1-weighted structural images were ac-
quired using a high-resolution single-shot MPRAGE sequence with an in-
plane acceleration factor of 2 using GRAPPA: TR/TE/TI ¼ 2530/3.3/
1100 ms, flip angle ¼ 7�, bandwidth ¼ 200 Hz/Px, in-plane resolution
1.0 � 1.0 mm, slice thickness 1.0 mm, matrix size ¼ 256 � 256, FoV ¼
176 � 256 � 256 mm, 176 sagittal slices, ascending acquisition, no fat
suppression. T2-weighted structural images were acquired using a high-
resolution single-shot MPRAGE sequence with an in-plane acceleration
factor of 2 using GRAPPA: TR/TE ¼ 3200/428 ms, flip angle ¼ 120�,
bandwidth ¼ 200 Hz/Px, in-plane resolution 1.0 � 1.0 mm, slice thick-
ness 1.0 mm, matrix size¼ 256� 256, FoV¼ 176� 256� 256 mm, 176
sagittal slices, ascending acquisition, no fat suppression.

2.4. Preprocessing

All MRI data were preprocessed using fMRIPrep (Esteban et al.,
2019), which uses Nipype (Gorgolewski et al., 2011) to adaptively
construct workflows based onmetadata. Anatomical T1-weighted images
were corrected for intensity non-uniformity (Tustison et al., 2010) and
skull-stripped based on the OASIS template using ANTs (Avants et al.,
3

2008). Cortical surfaces were reconstructed using FreeSurfer (Dale et al.,
1999) and tissue segmentation was performed using FSL (Zhang et al.,
2001). T2-weighted images were also supplied to surface reconstruction
where applicable.

Functional data were slice-time corrected using AFNI (Cox, 1996,
2012) and motion corrected using FSL (Jenkinson et al., 2002, 2012).
“Fieldmap-less” susceptibility distortion correction was performed by
co-registering the functional image to the T1-weighted image for that
subject with intensity inverted (Wang et al., 2017) constrained with an
average field map template (Treiber et al., 2016; Wang et al., 2017) using
ANTs. Functional images were next co-registered to the corresponding
T1-weighted image using FreeSurfer’s boundary-based registration
(Greve and Fischl, 2009). Transformations for performing motion
correction, susceptibility distortion correction, and functional to
anatomical registration were concatenated and applied in a single step
with Lanczos interpolation using ANTs. Functional data were then
resampled to the subject-specific cortical surface models by averaging
samples at six intervals along the normal between the white matter and
pial surfaces. Functional data were then spatially normalized to the fsa-
verage surface template based on sulcal curvature and downsampled to
the fsaverage6 template (Fischl et al., 1999). All subsequent analyses
(including functional normalization) were performed on surface data
(Van Essen and Glasser, 2018), and functional normalization algorithms
are compared to relatively high-performing nonlinear surface-based
anatomical normalization (Klein et al., 2010). Note that the terms
“voxel” and “vertex” are effectively interchangeable for the analyses of
interest; although we sometimes refer to voxels in keeping with con-
ventions in the literature, all analyses of interest were performed
explicitly on surface vertices.

The following confound variables were regressed out of the signal in a
single step (Lindquist et al., 2019) using AFNI’s 3dTproject: linear and
quadratic trends, sine/cosine bases for high-pass filtering (cutoff:
0.00714 Hz; ~140 s), six head motion parameters and their derivatives,
framewise displacement (Power et al., 2014), and six principal compo-
nent time series from anatomically-defined cerebrospinal fluid and white
matter segmentations (Behzadi et al., 2007).

2.5. Regions of interest

We evaluated the shared model in several regions of interest (ROIs)
defined according to a multimodal parcellation (MMP) based on
anatomical and functional data from the Human Connectome Project
(Glasser et al., 2016). The surface-based parcellation was projected to the
fsaverage surface template and downsampled to the fsaverage6 template
(Mills, 2016). We focused on four large cortical regions (Fig. 1), each of
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which comprises several smaller cortical areas. Following the MMP, early
auditory cortex (EAC) comprised five areas (A1, MBelt, LBelt, PBelt, RI)
and contained 808 and 638 vertices in the left and right hemispheres,
respectively. Auditory association cortex (AAC) comprised eight areas
(A4, A5, STSdp, STSda, STSvp, STSva, STGa, TA2) and contained 1,420
(left hemisphere) and 1,493 (right hemisphere) vertices. The
temporo-parieto-occipital junction (TPOJ) comprised five areas (TPOJ1,
TPOJ2, TPOJ3, STV, PSL) and contained 847 (left hemisphere) and 1,188
(right hemisphere) vertices. To reduce the posterior cingulate cortex
region to a more comparable size (originally 14 areas containing over 2,
500 vertices per hemisphere), we selected seven core areas (POS1, POS2,
v23ab, d23ab, 31pv, 31pd, 7m) containing 1,198 (left hemisphere) and
1,204 (right hemisphere) vertices; we refer to this region as posterior
Fig. 2. Schematic of connectivity-based shared response model. (A) Data comprise mu
(e.g., subject 1–4). The green and orange colors indicate distinct datasets correspondi
cross-validation: the first half of each story was assigned to the training set (light colo
set (dark colors; i.e., dark green and dark orange). (B) Time-stamped transcripts are sh
Who Forgot Ray Bradbury” by Neil Gaiman. (C) For a given ROI, we computed ISFC
series for each of 360 cortical areas (connectivity targets) in the training set. We t
transformation matrices (topographic bases) and a single shared connectivity space
response time series from the test set.

4

medial cortex (PMC). These ROIs (EAC, AAC, TPOJ, and PMC) span a
cortical hierarchy supporting language and narrative comprehension
(Lerner et al., 2011; Huth et al., 2016; Baldassano et al., 2017). The se-
lection of ROIs was not intended to be exhaustive; rather, we aimed to
benchmark the shared model in a sample of relevant ROIs ranging from
low-level sensory cortex to high-level association cortex. We analyze
ROIs in both hemispheres (left and right) separately in all subsequent
analyses, but generally collapse across hemispheres for statistical
summarization.
2.6. Connectivity-based shared response model

Here we apply a variant of connectivity hyperalignment to multiple
ltiple stories (e.g., dataset 1–2). and largely non-overlapping samples of subjects
ng to different story stimuli. Data were partitioned into training and test sets for
rs; i.e., light green and light orange), and the second half was assigned to the test
own for example stories “I Knew You Were Black” by Carol Daniel and “The Man
between the response time series at each vertex and the average response time
hen used SRM to decompose these ISFC matrices into a set of subject-specific
across all datasets. (D) We then apply the subject-specific transformations to
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datasets with largely non-overlapping subjects, where all datasets share a
common task (i.e., story-listening) and each “dataset” corresponds to a
unique, naturalistic stimulus (auditory recordings of spoken stories). We
use the term “hyperalignment” (via Haxby et al., 2011) to refer to the
superordinate class of functional normalization algorithms that leverage
commonality of function to transform subject-specific, topographic re-
sponses into a common response space. The current work develops a
specific algorithm within this overarching class, which we refer to as
connectivity-based shared response model (connectivity SRM or cSRM;
Fig. 2). Note, however, that this algorithm differs in several ways from
the core implementations of hyperalignment and connectivity hyper-
alignment, which, for example, use iterative Procrustes transformations
(Haxby et al., 2011; Guntupalli et al., 2016, 2018). We aim to describe
the method in enough detail to provide a recipe for others. Our method
was implemented using the Brain Imaging Analysis Kit (BrainIAK;
https://brainiak.org), and code to perform these analyses is publicly
available at https://github.com/snastase/connectivity-srm. To validate
our approach, we first split each story in half; we designate the first half
as the training set and the second half as the test set. All functional
normalization algorithms are estimated from the training set and vali-
dated on the test set.

The following describes the cSRM algorithm for a given ROI. For each
subject within a given dataset, we first estimate the functional connec-
tivity between each vertex in the ROI and a set of connectivity targets. In
the current context, because the subjects in a given dataset are all
exposed to the same time-locked naturalistic story stimulus, we use ISFC
to estimate stimulus-related functional connectivity and filter out idio-
syncratic noise and intrinsic fluctuations (Simony et al., 2016; Nastase
et al., 2019a). Leave-one-subject-out ISFCs are computed by correlating
the response time series in one subject with the average response time
series across the remaining subjects in the same dataset (i.e., exposed to
the same stimulus). To construct intersubject connectivity targets, we
first extract for each subject the regional-average response time series for
360 areas spanning the cortex derived from a multimodal surface-based
cortical parcellation (Glasser et al., 2016). For a given subject, we then
average the 360 response time series across all other subjects (excluding
the current subject). Finally, we compute the Pearson correlation be-
tween the response time series at each vertex in the ROI for the left-out
subject and the regional-average response time series for 360 connec-
tivity targets derived from the remaining subjects. This yields an asym-
metric ISFC matrix for each subject with a number of rows corresponding
to the number of vertices in the ROI and 360 columns representing the
connectivity targets. The logic so far may seem counterintuitive; i.e., how
can poorly-aligned connectivity targets be used to “bootstrap”
fine-grained alignment? This approach hinges on the assumption that the
voxels within an ROI are characterized by topographic “signatures” of
long-range functional connectivity (e.g., Heinzle et al., 2011; Jbabdi
et al., 2013; Arcaro et al., 2015). Connectivity targets are deliberately
coarse (to mitigate deficiencies of anatomical alignment), but wide-
spread enough to afford distinct connectivity signatures for driving
fine-grained alignment. Although the overall aim is similar, our method
of estimating connectivity differs from the core implementation of con-
nectivity hyperalignment by Guntupalli et al. (2018) in several ways.
First, we estimate functional connectivity using ISFC rather than
within-subject functional connectivity. ISFC analysis relies on a shared
stimulus to effectively isolate stimulus-related connectivity and is not
applicable to resting-state data. Second, Guntupalli and colleagues
(2018, pp. 20–21) used finer-grained, higher-dimensional connectivity
vectors. To construct connectivity targets, they applied an initial, coarse
connectivity hyperalignment within each of 1,284 regularly-spaced
searchlights, then extracted the top three principal component time per
searchlight, yielding 3,852 target times series. These 3,852 connectivity
targets were then used to drive connectivity hyperalignment for the
vertices of interest. Instead we simply use the average time-series per
parcel, yielding an order of magnitude fewer targets, limiting ourselves to
coarser-grained, lower-dimensional connectivity vectors. This was an
5

arbitrary decision for the sake of simplicity and computational efficiency;
however, we expect that similar alternatives (e.g., using the first prin-
cipal component) would yield similar performance. Third, we use a
predefined multimodal cortical parcellation to delineate connectivity
targets rather than regularly-spaced searchlights agnostic to areal
borders.

In contrast to time-series hyperalignment, which relies on a shared
stimulus to evoke time-locked response trajectories across subjects,
moving to connectivity abstracts away from the time series. Following
the notation in Fig. 2, time-series hyperalignment operates on response
matrices where the number of rows corresponds to the number of voxels
or vertices in the ROI and the number of columns corresponds to the
number of time points in the experiment. (Notation conventions vary,
and sometimes the data matrix is transposed in prior publications—e.g.,
Haxby et al., 2011—but this is not a substantive difference). Each row
corresponds to the response time series for a single voxel and each col-
umn corresponds to the distributed response pattern for a given time
point. Different stimuli result in different response trajectories that
cannot effectively be aligned and may yield different shared spaces
(although these spaces may converge for sufficiently rich stimuli). On the
other hand, connectivity hyperalignment operates on connectivity
matrices where the number of columns instead corresponds to the
number of connectivity targets elsewhere in the brain (Fig. 2C). In this
framework, each row corresponds to the connectivity vector (a coarse
whole-cortex connectivity profile) for a given “seed” voxel in the ROI;
each column in the matrix corresponds to a fine-grained, spatially
distributed pattern of connectivities across voxels in the ROI relative to a
given connectivity target. Critically, the shape of the connectivity
matrices is dictated by the number of connectivity targets, not the
number of time points in a stimulus. These connectivity matrices are
isomorphic across stimuli and can be more readily aggregated than
disparate response trajectories. The “second-order isomorphism” of
connectivity matrices allows us to aggregate (i.e., stack) ISFC matrices
across both subjects and story stimuli.

The goal of hyperalignment is then to leverage commonality of
function to find a set of transformations (e.g., rotations) that map each
subject’s idiosyncratic voxel response space into an abstract, shared
response space. The SRM implementation used here frames this in terms
of matrix factorization (Chen et al., 2015; Anderson et al., 2016), where
the aggregate data matrix across subjects is decomposed into a
reduced-dimension shared space and a set of subject-specific topographic
transformation matrices. Applying this algorithm to connectivity
matrices yields a shared connectivity space. Intuitively, it may seem that
the resulting subject-specific transformations are only suitable for
aligning connectivity data—but this is not the case (Guntupalli et al.,
2018). Importantly, these subject-specific matrices are topographic
transformations and can be used to project response time series into the
shared space—assuming the connectivity matrices capture sufficient
functional commonality to effectively align response trajectories.
Concretely, we applied the SRM to the ISFC matrices derived from the
training data (first half of each story), resulting in a shared connectivity
space and subject-specific transformations. We then used these trans-
formations to project response time series from the test set (second half of
each story) into the shared space for evaluation. Note that the SRM al-
gorithm can differ in performance relative to, e.g., the iterative Pro-
crustes transformations used by Guntupalli and colleagues (2018; see,
e.g., Chen et al., 2015, for comparisons among algorithms).

For subjects participating in multiple datasets, we computed their
connectivity matrices separately per dataset, then averaged these prior to
estimating the SRM. This ensures that each subject only submits one
connectivity matrix to the SRM and only receives one transformation
matrix into shared space. Note that this is not strictly necessary; multiple
connectivity matrices could be submitted for a single subject partici-
pating in multiple datasets, yielding multiple dataset-specific trans-
formations. However, this would also bias the shared space toward
subjects contributing multiple connectivity matrices, so we did not

https://brainiak.org
https://github.com/snastase/connectivity-srm
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explore this alternative here. Although the majority of subjects (56%)
only participated in one scan (i.e., story), more densely sampled subjects
may contribute more robust connectivity estimates due to this averaging
procedure.

We can also exclude a subset of stories and subjects when estimating
the shared space. First, we estimate a shared connectivity space based on
the training data from a subset of stories. In the schematic depicted in
Fig. 2, this corresponds to excluding, e.g., “dataset 1” (green) entirely
when estimating the shared space; i.e., the shared space is estimated from
datasets (e.g., “dataset 2”, orange) comprising stimuli and subjects not
included in dataset 1. Subsequently, we compute connectivity matrices
on the training data for a set of left-out subjects and stories not used to
estimate the shared space. Given the preexisting shared connectivity
space and a connectivity matrix for a given left-out subject, we can solve
for that subject’s topographic transformation into the predefined shared
space (as described in Chen et al., 2015). We can then use this trans-
formation to project the left-out subject’s test data into shared space.
That is, in Fig. 2, we use the training half of dataset 1 (light green) to
define a transformation into the preexisting shared space, and project the
test half of dataset 1 (dark green) into this independent shared space.
Projecting left-out subjects into a predefined shared space in this manner
does not alter the shared space (or the preexisting transformations for
subjects used to estimate the shared space). Note that in the context of
connectivity SRM, the training data used to project left-out subjects into
shared space comprise connectivity matrices that are not strictly tied to a
given stimulus; this allows novel subjects listening to novel stories to be
transformed into an independent, predefined shared space.

Although we focus on defining a single shared connectivity space
across datasets, we can also apply cSRM separately to each story dataset
in isolation to create story-specific shared spaces. We directly compare
the single connectivity-based shared space defined across all stories to
story-specific connectivity-based shared spaces defined separately for
each dataset. We also compare cSRM to conventional within-story time-
series hyperalignment using the analogous SRM implementation (tSRM;
Chen et al., 2015). SRM yields a reduced-dimension shared space at a
specified dimensionality of k shared features; in several cases we
compare shared spaces at varying dimensionality. To control for unin-
teresting effects of dimensionality reduction with SRM, we also per-
formed principal components analysis (PCA) at matched dimensionality
(as in, e.g., Chen et al., 2015). PCA imposes an orthogonality constraint
analogous to SRM, but when applied to the aggregated subject data yields
the same projection across subjects. Intuitively, PCA can be thought of as
a control condition implementing similar dimensionality reduction, but
without accounting for topographic idiosyncrasies across subjects. When
interpreting results, cSRM performance should be compared to PCA at
the matching dimensionality.

2.7. Time-segment classification

We evaluated cSRM against alternative normalization schemes using
between-subject story time-segment classification (Haxby et al., 2011).
This analysis measures how accurately brief spatiotemporal response
trajectories corresponding to unique segments of a story can be matched
across subjects. We divided the test data (second half of each story) into
10-TR (15-second) segments and concatenated the response patterns
across TRs into a single spatiotemporal response vector (or response
trajectory) per segment. To perform between-subject classification for a
given test subject, we first averaged the response vectors for each time
segment over N–1 subjects excluding the test subject. We then computed
the Pearson correlation between each response vector in the test subject
and the average response vectors from the remaining subjects. A given
response vector in the test subject was correctly classified if it is most
highly correlated with the correct average vector from the remaining
subjects. This is effectively a correlation-based 1-nearest neighbor clas-
sifier with leave-one-subject-out cross-validation (Haxby, 2012). Chance
accuracy is 1 over the number of time segments in the test data for a given
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story and varies across stories. Note that, by design, this analysis can
capitalize on any information shared across subjects and is agnostic to the
type of information (e.g., sensory, semantic) encoded in response
trajectories.

2.8. Intersubject correlation

We used two varieties of intersubject correlation analysis to further
dissect how cSRM affects spatially distributed response time series. We
first examined how cSRM impacts vertex- or feature-wise intersubject
time-series correlations (Hasson et al., 2004, 2010; Nastase et al., 2019a).
For each subject, we computed the Pearson correlation between the
response time series at each vertex or feature and the average response
time series at that vertex or feature across N – 1 remaining subjects (i.e.,
leave-one-out temporal ISC). For each vertex or feature, we then aver-
aged ISCs across subjects to summarize the shared signal for that ver-
tex/feature. To evaluate how cSRM affects spatially distributed response
patterns, we computed intersubject pattern correlations at each time
point (Chen et al., 2017; Zadbood et al., 2017; Nastase et al., 2019a).
More specifically, for each subject, we computed the Pearson correlation
between the response pattern at each TR and the average response
pattern for N – 1 remaining subjects, then averaged these correlations
across all time points per subject (i.e., leave-one-out spatial ISCs). We
summarized these values by averaging the resulting ISCs across time
points. Note that cSRM could conceivably produce the same degenerate
response pattern across all time points and still yield high spatial ISCs,
despite effectively discarding the stimulus-specific information of inter-
est. However, this would be inconsistent with high time-segment classi-
fication accuracies; therefore, we consider spatial ISCs as a view into the
observed time-segment classification performance rather than a bench-
mark in isolation. Evaluating the efficacy of cSRM using ISCs may seem
“circular” at first, but there are two reasons why this is not the case: (a)
cSRM optimizes intersubject similarity of connectivity matrices, not
response trajectories; (b) the shared space is estimated from a subset of
training data (the first half of each story) and the ISCs are evaluated on a
separate subset of test data (the second half of each story).

2.9. Semantic encoding model

We also evaluated how cSRM impacts model-based encoding and
decoding for two stories (Fig. 3; Güçlü and van Gerven, 2017; Vodrahalli
et al., 2017; Van Uden et al., 2018; Wen et al., 2018). To quantify the
semantic content of the stories, we first used a semi-supervised force-
d-alignment algorithm (Yuan and Liberman, 2008) to extract
time-stamped transcripts from each story stimulus (see Fig. 2 for an
example). We then assigned semantic vectors to each word from the
300-dimensional word2vec embedding space trained on ~100 billion
words from the Google News corpus (Mikolov et al., 2013). More
semantically similar words are located nearer to each other in this vector
space; that is, they have more similar word embeddings (Turney et al.,
2010). For each TR, all words with onsets occurring within that TR were
assigned to the TR, and any words spanning two TRs were assigned to
both. For TRs containing multiple words, we simply averaged the cor-
responding word embeddings to produce a single semantic vector per TR
(cf. Vodrahalli et al., 2017). TRs in which no words occurred were
assigned zero vectors. To account for varying hemodynamic lag, the
300-dimensional model was concatenated at delays of 2, 3, 4, and 5 TRs
(3.0, 4.5, 6.0, 7.5 s), yielding a 1200-dimensional vector per TR (simi-
larly to Huth et al., 2016). Delays were applied separately for the training
and test data so as to avoid leakage across the train–test boundary.

To assess whether semantic information encoded in the embedding
space captures variability in brain activity, we used a forward encoding
model (Mitchell et al., 2008; Wehbe et al., 2014; Huth et al., 2016;
Pereira et al., 2018). Following work by Huth et al. (2016), we used ridge
regression to estimate coefficients (weights) for these 1200 semantic
model features. L2-regularized linear regression effectively imposes a



Fig. 3. Schematic of semantic model-based encoding and decoding. (A) Connectivity SRM is used to project both the training and test data into the shared space. The
green and orange colors indicate distinct datasets corresponding to different story stimuli. Light colors (i.e., light green and light orange) indicate training data (first
half of each story) and dark colors (i.e., dark green and dark orange) indicate test data (second half of each story; as in Fig. 2). Here we average response time series for
the N – 1 training subjects. (B) Ridge regression is then used to find a set of coefficients (weights) mapping from the semantic feature space (word embeddings) to the
response time series at each vertex or feature. (C) In the forward encoding analysis, we use the weight matrix estimated from the training data to predict vertex- or
feature-wise response time series from the semantic vectors in the test set. In the decoding (or inverse encoding) analysis, we use the inverse of this weight matrix to
predict semantic vectors from the response patterns at each time point. In both cases, we use correlation to evaluate that match between the predicted and actual
response time series or semantic vectors.
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prior on the feature weights: the identity matrix scaled by a ridge coef-
ficient (Diedrichsen and Kriegeskorte, 2017). Ideally, the optimal ridge
coefficient is selected using nested cross-validation. However, this is
computationally intensive, and will tend to yield different ridge co-
efficients for each subject, voxel or vertex, and cross-validation fold,
complicating model comparison. For example, Huth et al. (2016) used a
resampling approach to find optimal ridge coefficients, then averaged
these across voxels and subjects to arrive at a single, consensus ridge
coefficient (183.3 in that case). Here, to simplify numerous model
comparisons, we use an arbitrary ridge coefficient of 100 throughout.
7

This of course handicaps the absolute performance of our model. Our
goal is not to engineer a novel or high-performing encoding model (see,
e.g., Huth et al., 2016; Pereira et al., 2018), but to explore how functional
normalization algorithms such as cSRM impact model performance
under simplifying assumptions. We are interested in the encoding model
insofar as it can provide insights into the performance of normalization
algorithms.

Ridge regression was used to estimate weights so as to best predict the
response time series at each vertex (or feature) in the training data
(implemented using scikit-learn; Pedregosa et al., 2011). In the case of
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functional normalization (e.g., cSRM), note that we first estimated
transformations into shared space from the training data. In order to fit
the semantic encoding model, we used these transformations to project
the training data (from which the transformations were derived) into
shared space. That is, both the SRM transformations and the semantic
model weights were estimated from the training data (first half of each
story), affording unbiased validation on the test data (second half of each
story). We focus on leave-one-subject-out cross-validation to evaluate the
semantic encoding models: for each cross-validation fold, regression
weights were estimated on the training data for N – 1 subjects, and
evaluated on the test data for the left-out subject. In the current work, we
average the training data across the N – 1 subjects in shared space before
training; however, these data could be concatenated instead.

The regression weights estimated from the training data can then be
used to predict response time series from the semantic vectors in a left-
out subject. This approach—predicting vertex-wise response time series
from the semantic model—is referred to as “forward encoding”. To
evaluate the quality of these predictions, we computed the Pearson
correlation between the predicted response time series and the actual
response time series. We also perform a model-based decoding analysis,
referred to as an “inverted encoding model,” to predict semantic vectors
from response patterns in the test set (Thirion et al., 2006; Brouwer and
Heeger, 2009; Sprague et al., 2018; Gardner and Liu, 2019). Note that
this approach differs from generic classification analyses (e.g., Norman
et al., 2006; Haxby, 2012; see Naselaris and Kay, 2015), which do not
specify an explicit feature space for decoding. We first averaged co-
efficients across the four delays to obtain a single 300-dimensional
weight matrix (as in Huth et al., 2012). We then computed the
pseudo-inverse of the weight matrix comprising all vertices or features in
an ROI. We multiplied the response pattern at each time point by this
inverted weight matrix, resulting in a predicted semantic vector for each
time point. We evaluated the quality of these predictions by computing
the Pearson correlation between the predicted semantic vector for each
time point and the actual semantic vectors for all time points in the test
set. We then assess the rank of the correct semantic vector in the test set
and normalize this by the number of semantic vectors in the test set to
obtain a normalized rank accuracy score (Pereira et al., 2018). We
average these rank accuracies across all time points in the test set. The
rank accuracy score ranges from 0 to 1 where a score of 1 indicates that
the correct semantic vector was the most similar to the predicted se-
mantic vector and thus the highest-ranked vector. If there were no sys-
tematic relationship between predicted and actual semantic vectors, this
would yield a chance rank accuracy score of approximately 0.5.
8

3. Results

3.1. Time-segment classification

We evaluated functional normalization algorithms in terms of
between-subject story time-segment classification (Haxby et al., 2011).
We divided the test data into 10-TR (15-second) response trajectories and
supplied these to a between-subject correlation-based classifier (chance
is 1 over the number of time segments for a given story). We first assessed
between-subject time-segment classification in AAC across all 10 story
stimuli (see Fig. 4). We compared classification performance for several
implementations of functional normalization against the anatomically
normalized data (“no SRM”), including time-series SRM defined within
each story, connectivity SRM defined within each story, and connectivity
SRM defined across all stories. For this representative example, we fit the
SRMs with k ¼ 100 shared features. We estimated 95% bootstrap con-
fidence intervals surrounding the mean classification accuracy across
left-out subjects and hemispheres by resampling subjects with replace-
ment. We avoid performing gratuitous null-hypothesis statistical tests,
but note that, considered in isolation, cases in which the 95% confidence
interval for the mean of one condition does not cross the mean of another
imply statistically significant differences (at p < .05; Nakagawa and
Cuthill, 2007). The visual depiction of confidence intervals does not ac-
count for the within-subjects design within a story, and is therefore more
conservative than a paired test (Loftus and Masson, 1994).

In general, all functional normalization algorithms provided consid-
erable gains in time-segment classification over surface-based anatomical
normalization. In most cases, the connectivity SRM was comparable to
time-series SRM. Defining a connectivity-based shared space across all
stories yielded comparable results to cSRMs defined separately for each
story. In some cases—for example the “Pie Man” and “Running from the
Bronx” stimuli recorded at PNI—the cSRM defined across stories pro-
vided marked improvement over other functional normalization algo-
rithms. In general, classification performance on average improved from
40.3% with anatomical alignment to 63.7% with cSRM defined across all
stories; tSRM and within-story cSRM yielded summary accuracies of
59.8% and 58.1% respectively.

Finally, we estimated a separate connectivity space across all stories
excluding the four most recently collected stories (and the constituent
subjects). We then computed connectivity matrices from the training
data for each left-out subject in the left-out stories “I Knew You Were
Black” and “The Man Who Forgot Ray Bradbury.” We excluded the “Pie
Man (PNI)” and “Running from the Bronx (PNI)” stories from model
estimation to rule out the effect of shared subjects. We also excluded the
Fig. 4. Time-segment classification across all
stories in auditory association cortex (AAC).
For each story, we compared surface-based
anatomical alignment with no SRM (light
gray), time-series SRM (necessarily defined
within each story; dark gray), connectivity
SRM defined separately within each story
(pink), and a single connectivity SRM
defined across all stories (red). We also
recomputed a single connectivity SRM across
all stories excluding subjects in the rightmost
four datasets, and projected the “black” and
“forgot” stories into this independent shared
space (purple). The y-axis indicates between-
subject time-segment classification accuracy
averaged across left-out subjects and hemi-
spheres. Dotted horizontal white lines indi-
cate chance accuracy for each story (1 over
the number of time segments in the test
data). Error bars indicate 95% bootstrap
confidence intervals estimated by resampling
left-out subjects with replacement.



S.A. Nastase et al. NeuroImage 217 (2020) 116865
“Pie Man (PNI)” and “Running from the Bronx” stories from model
evaluation due to the relatively low audio quality of these stories. Given
the predefined shared space and a connectivity matrix for each subject,
we can derive a transformation for each left-out subject into the preex-
isting shared space (Chen et al., 2015). Projecting the test data for left-out
subjects into this independent shared space yielded comparable im-
provements in accuracy over anatomical alignment (from 39.0% with
anatomical alignment to 65.3% with the independent cSRM). This sug-
gests that (a) the shared space generalizes to novel subjects and stimuli,
and (b) the connectivity estimates for the training half of these left-out
stories are sufficient for aligning these data to the shared space. In
addition to comprising a completely non-overlapping sample of subjects
viewing a different stimulus, these data were collected on a different
scanner model using a different acquisition sequence.

We next assessed time-segment classification for two example stories
(“I Knew You Were Black” and “The Man Who Forgot Ray Bradbury”)
using cSRM at varying dimensionality across all four ROIs (Fig. 5). We
compared classification performance for cSRM at dimensionalities k ¼
100, 50, and 10 shared features to anatomical normalization and PCA at
matching dimensionality. PCA provides a control for the dimensionality
reduction of SRM without resolving functional topographies across sub-
jects. In EAC, cSRM afforded minimal improvements over anatomical
alignment and only at low dimensionalities (from 35.3% to 42.5% at the
best-performing k ¼ 10 across both stories; chance � 3.7%). However, in
AAC and TPOJ, cSRM markedly improved classification performance
over anatomical alignment: from 39.0% to 70.2% at the best-performing
k ¼ 50 in AAC; and from 22.9% to 48.5% at the best-performing k ¼ 100
in TPOJ. Classification performance was only modestly improved in PMC
(from 16.1% to 21.9% at k ¼ 50). The PCA control analysis indicates that
decreasing dimensionality biases time-segment classification perfor-
mance upward, but that reduced dimensionality alone cannot account for
the improvement due to cSRM. Furthermore, the consistent pattern of
increasing performance with decreasing dimensionality for PCA sug-
gests—particularly for AAC and TPOJ, which do not perform best at
lowest dimensionality—that a higher-dimensional shared space (e.g., k
¼ 100, 50) may encode information lost at lower dimensionality (e.g., k
¼ 10) for some ROIs.
3.2. Intersubject correlation

The connectivity SRM maps each subject’s idiosyncratic responses
into a shared space maximizing intersubject alignment of connectivity
matrices—it does not explicitly optimize intersubject response time-
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series or pattern correlations. However, improvements in between-
subject time-segment classification suggest that connectivity-based
normalization in fact does implicitly align temporally-specific re-
sponses. To better understand this effect, we first examined how cSRM
impacts response time series. For each subject, we computed vertex- or
feature-wise intersubject time-series correlations (Hasson et al., 2004;
Nastase et al., 2019a). We compared temporal ISCs at each vertex with
anatomical alignment alone, with PCA to control for dimensionality
reduction in SRM, and with cSRM at dimensionalities k ¼ 100, 50, and
10. This comparison is not straightforward: the anatomically-aligned
ROIs contain many hundreds of correlated features; on the other hand,
cSRM (or PCA) reduces this feature space to fewer dimensions accounting
for orthogonal (uncorrelated) components of response variance (each
feature reflects a distributed response topography across the entire ROI).

We first visualized the average ISC across subjects for every vertex or
feature in the ROI for each hemisphere (Fig. 6A). This reveals, for
example, that cSRM and PCA isolate very few features in EAC (~1 in each
hemisphere) that capture the vast majority of the shared signal across
subjects. We did not observe large differences in the distribution tem-
poral ISCs across hemispheres (Fig. S2). In downstream ROIs, however,
cSRM yields a considerably larger number of dimensions capturing
shared signal than PCA. This implies that functional alignment reveals
higher-dimensional shared information across subjects. To more intui-
tively visualize this, we computed the number of features in each ROI
exceeding an arbitrary ISC threshold of r > 0.1 (Fig. 6B). Note that in the
reduced-dimension spaces, the absolute number of features exceeding
this threshold is limited by the specified number of features k. We
considered visualizing instead the proportion of features exceeding
threshold relative to the maximum possible number of features k, but this
obscures the fact that in most cases cSRM at, e.g., k ¼ 100 yields several
times the absolute number features exceeding threshold as cSRM at k ¼
10; although the proportion of features exceeding threshold increases at
lower values of k, the absolute number of features exceeding threshold is
considerably higher at higher values of k. These features represent largely
orthogonal, non-redundant components of the response and a greater
absolute number of features reflects higher-dimensional information
shared across subjects. In AAC, for example, cSRM at k ¼ 100 yields on
average 79 features with ISC exceeding 0.1, while PCA at k ¼ 100 yields
only 21. Similarly, in TPOJ, cSRM at k ¼ 100 increases the number of
features exceeding this threshold from 15 to 66. In PMC, cSRM at k¼ 100
increases the number of features exceeding threshold from 12 to 50. Even
in EAC, cSRM at k ¼ 100 yields over twice the number of features with
ISCs exceeding 0.1 as PCA at matched dimensionality (39 and 16
Fig. 5. Time-segment classification at
varying dimensionality for each ROI. For
two example stories, we compared
surface-based anatomical alignment
with no SRM (gray), PCA controlling for
the dimensionality reduction of SRM
without resolving topographic idiosyn-
crasies (green–blue), and cSRM at di-
mensionalities k ¼ 100, 50, and 10
(orange–purple). When interpreting
reduced-dimension model performance,
cSRM performance should be compared
to PCA at the matching dimensionality.
The y-axis indicates between-subject
time-segment classification accuracy
averaged across left-out subjects and
hemispheres. Dotted horizontal white
lines indicate chance accuracy for each
story (1 over the number of time seg-
ments in the test data). Error bars indi-
cate 95% bootstrap confidence intervals
estimated by resampling left-out sub-
jects with replacement.



Fig. 6. Intersubject time-series correlations per vertex/feature. (A) We computed the average ISC across subjects for each vertex with anatomical alignment and no
SRM (light gray). Each marker corresponds to a vertex or feature for each hemisphere; for example, cSRM with k ¼ 10 yields 20 ISC values corresponding to 10
features from the left hemisphere and 10 features from the right hemisphere. See Fig. S2 for the distribution of temporal ISC values split by hemisphere. We also
computed ISCs on the regional-average response time series per hemisphere for the purpose of comparison (dark gray markers overlaid on the “no SRM” strip). We
visualized the average ISC across subjects for each feature after dimensionality reduction using PCA (green–blue) and cSRM at dimensionalities k ¼ 100, 50, and 10
(orange–purple). When interpreting reduced-dimension model performance, cSRM performance should be compared to PCA at the matching dimensionality. The y-
axis indicates the average temporal ISC across subjects per vertex or feature in each hemisphere. (B) We computed the number of features with leave-one-out ISCs
exceeding a threshold of r > 0.1 per subject (the maximum of which is limited by the specified k). The y-axis indicates the average number of features with ISCs
exceeding this threshold across subjects. We visualized the absolute number of features exceeding threshold (rather than, e.g., the proportion) to demonstrate that
considerably more orthogonal (non-redundant) features with high ISC are observed at higher values of k. Note, however, that the absolute number of features
exceeding threshold is bounded by the specified total number of features k. Error bars indicate 95% bootstrap confidence intervals estimated by resampling subjects
with replacement. See Fig. S2 for the distribution of temporal ISC values split across hemispheres.
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features, respectively). We can infer that these numerous, largely
orthogonal features with moderate ISCs encode high-dimensional infor-
mation about the stimulus, because the stimulus is what drives shared
responses across subjects (Nastase et al., 2019a). Again, unlike vertices in
anatomical space, these features represent distributed topographies
across the ROI and capture orthogonal components of response variance.
Interestingly, although we find that time-segment classification in EAC is
maximal at k ¼ 10, we find considerably more than 10 features with
moderate ISC at k¼ 50 and 100. These features, despite having moderate
ISCs, may not be informative for time-segment classification.
Fig. 7. Intersubject pattern correlations. We compared spatial ISCs with anatomi
(green–blue), and cSRM with dimensionalities k ¼ 100, 50, 10 (orange–purple). When
be compared to PCA at the matching dimensionality. The y-axis represents spatial ISC
95% bootstrap confidence intervals estimated by resampling subjects with replacem
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Can the transformations derived from connectivity SRM align
spatially distributed response patterns across subjects? To provide
another window into the improvement in time-segment classification, we
computed intersubject pattern correlations at each time point (Chen
et al., 2017; Zadbood et al., 2017; Nastase et al., 2019a). We assessed
these spatial ISCs with anatomical alignment, PCA, and cSRM (Fig. 7).
We found that spatial ISCs generally increased with reduced dimen-
sionality, but that cSRM provides a boost over both anatomical alignment
and PCA. In EAC, the benefit of cSRM over anatomical alignment was
negligible, but exceeded PCA at matching dimensionality. In AAC and
cal alignment (gray), PCA to control for the reduced dimensionality of SRM
interpreting reduced-dimension model performance, cSRM performance should
for each time point averaged across time points and subjects. Error bars indicate
ent.
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TPOJ, however, cSRM significantly improved the alignment of spatial
response topographies across subjects. For example, in AAC, spatial ISCs
almost doubled, from r ¼ .110 with anatomical alignment (r ¼ .058 with
PCA) to r ¼ .211 with cSRM at k ¼ 100. An effect of similar relative
magnitude was observed in TPOJ: from r ¼ .082 with anatomical
alignment (r ¼ .029 with PCA) to r ¼ .153 at cSRM at k ¼ 100. In PMC,
spatial ISCs increased from r ¼ .074 (r ¼ .021 with PCA) to r ¼ .100 with
cSRM at k ¼ 100. This matches with the expectation that the SRM al-
gorithm will enforce spatial patterns that are increasingly correlated
across subjects at lower dimensionality k.
3.3. Semantic encoding model

Encoding models have been increasingly adopted as a means of
testing explicit feature spaces capturing representational content ranging
from low-level visual features to high-level semantic content (Naselaris
et al., 2011; Serences and Saproo, 2012). However, these models are
often estimated independently per subject using large volumes of data
(e.g., Huth et al., 2016), which poses problems of both scalability (in
terms of data collection) and generalizability across subjects (cf. Güçlü
and van Gerven, 2017; Vodrahalli et al., 2017; Van Uden et al., 2018).
Here we used a simplistic semantic encoding model to explore how cSRM
impacts model performance. We assigned semantic word embeddings to
each time point, then used ridge regression to estimate a weight matrix
mapping between word embeddings and brain responses (see Fig. 3).

In the forward encoding analysis, we used the regression weights
estimated from the training data to predict vertex- or feature-wise
response time series in the test set for a left-out subject. To evaluate
the forward model, we computed the Pearson correlation between the
predicted time series and actual time series for each vertex or feature. We
compared forward encoding performance with surface-based anatomical
alignment, PCA to control for dimensionality reduction in SRM, and
Fig. 8. Forward encoding model performance. (A) We evaluated the vertex-wise betw
with anatomical alignment (no SRM). Forward encoding performance for the regiona
gray markers overlaid on the “no SRM” strip). We also compared between-subject forw
PCA (green–blue) and cSRM at dimensionalities k ¼ 100, 50, and 10 (orange–purple)
should be compared to PCA at the matching dimensionality. The y-axis represents the
subjects for each vertex or feature in each hemisphere. (B) We computed the number
per subject. The y-axis represents the average number of features with performance ex
95% bootstrap confidence intervals estimated by resampling test subjects with repla
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cSRM at dimensionalities k ¼ 100, 50, and 10. Although we emphasize a
predictive approach using leave-one-subject-out cross-validation, we also
present the typical within-subject performance (as in, e.g., Huth et al.,
2016). Similarly to the temporal ISC analysis, this makes for a difficult
comparison because vertices in the anatomical ROI are highly redundant
(correlated), while PCA and cSRM reduce this feature space to fewer,
orthogonal dimensions. We first visualized the vertex- and feature-wise
performance averaged across subjects (Fig. 8A), then plotted the num-
ber of features in each ROI exceeding an arbitrary performance threshold
of r> 0.1 (Fig. 8B). Although themaximum number of features exceeding
threshold is limited by the specified k, greater absolute numbers of
largely orthogonal features surpassing this threshold reflect
higher-dimensional semantic information shared across subjects. In all
cases, cSRM dramatically increased the number of well-predicted fea-
tures relative to the dimensionality-matched PCA control. In EAC, cSRM
at k ¼ 100 doubled the number of features with performance exceeding r
> 0.1 from 11 to 22. In AAC and TPOJ, cSRM at k ¼ 100 roughly tripled
the number of features exceeding the forward encoding performance
threshold—from 16 to 49 and from 12 to 36, respectively. In PMC, the
number of features exceeding this threshold increased from 9 with PCA
to 23 with cSRM at k ¼ 100.

We next inverted the encoding model to predict semantic vectors
from spatially distributed response patterns (Thirion et al., 2006;
Brouwer and Heeger, 2009; Sprague et al., 2018; Gardner and Liu, 2019).
While between-subject time-segment classification can capitalize on any
diagnostic information shared across subjects, between-subject mod-
el-based decoding is strictly limited to the representational content
encoded in the model. For each time point in the test set, we multiplied
the distributed response pattern by the inverted weight matrix to recover
a predicted semantic vector for that time point. To evaluate decoding
performance, we computed the Pearson correlation between the pre-
dicted semantic vector and the actual semantic vectors in the test set and
een-subject (light gray) and within-subject (dark gray) forward encoding models
l-average response time series per hemisphere is visualized for comparison (dark
ard encoding performance for each feature after dimensionality reduction using
. When interpreting reduced-dimension model performance, cSRM performance
average correlation between predicted and actual response time series across test
of features with forward encoding performance exceeding a threshold of r > 0.1
ceeding this threshold across test subjects (and hemispheres). Error bars indicate
cement.
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summarized this using a normalized rank accuracy score (Pereira et al.,
2018). We compared between-subject model-based decoding using
anatomical alignment, PCA, and cSRM (Fig. 9). Although we focus on
between-subject decoding using leave-one-subject-out cross-validation,
we also computed within-subject decoding performance for comparison.
In general, model-based decoding accuracies were low; likely due to our
simplistic model estimation procedure. However, we observed some
interesting trends. First, within-subject performance exceeded
between-subject performance using surface-based alignment in AAC and
TPOJ, suggesting that anatomical normalization alone fails to translate
some semantic information across brains. Second, dimensionality
reduction did not consistently increase performance. Crucially, in almost
all cases, between-subject decoding performance using cSRM exceeded
both between- and within-subject performance using anatomical align-
ment. For example, in AAC, the average rank accuracy across test subjects
increased from 52.1% with anatomical alignment (54.1% for
within-subject decoding) to 56.5% with cSRM at k ¼ 100 (with a rank
accuracy of 63.5% for the best-performing test subject).

3.4. Consensus space across stimuli

Finally, we examined the consequences of deriving a single shared
space across numerous distinct stories. Is the single, connectivity-based
shared space defined across all datasets notably different from shared
connectivity spaces derived separately for each story? For example, we
may expect that each story considered in isolation will nonetheless yield
similar shared spaces due to the nature of functional connectivity. To
address this, we computed ISFC matrices from the test data for each
subject and projected these ISFCmatrices into either (a) the connectivity-
based shared space defined across all stories (across-story cSRM), or (b)
the unique connectivity-based shared spaces defined separately for each
story (within-story cSRM). The subjects contributing to each within-story
cSRM are a strict subject of the subjects contributing to the across-story
cSRM. For illustrative purposes, we used AAC and cSRM at k ¼ 100.
We then flattened and averaged the ISFC matrices across subjects per
story in their respective shared spaces and computed the pairwise cor-
relations between the mean ISFC matrices across stories (Fig. 10). In fact,
ISFCs projected into the single, shared connectivity space are more
similar across all pairs of stories than those projected into story-specific
shared spaces: the average correlation of ISFC matrices increased from
r ¼ .623 to r ¼ .764 across all pairs of stories (averaged across hemi-
spheres). We did not observe a substantive difference between hemi-
spheres (Fig. S3). These results are expected but serve as a useful sanity
check, and suggest that the transformations defined across all stories
point to a consensus space. Interestingly the magnitude of this effect may
increase in higher-level ROIs, where the within-story shared connectivity
spaces are more distinct (Figs. S4–8). Datasets with longer story stimuli
Fig. 9. Model-based decoding performance. We compared between-subject decod
dimensionality reduction of SRM (blue–green), and cSRM at dimensionalities k ¼ 1
performance, cSRM performance should be compared to PCA at the matching dimen
(dark gray). The y-axis indicates rank accuracy averaged across time points, sub
approximately 50% for the rank accuracy score. Error bars indicate 95% bootstrap c
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(more TRs) and larger samples of subjects likely have a larger “pull” on
the consensus space (Fig. S9).

We next considered whether constructing a shared space across
distinct stimuli impacts responses within a story. Similarly to before, we
projected the response time series for the test data into either a shared
connectivity space defined across all stories or story-specific shared
connectivity spaces (in AAC, using cSRM at k ¼ 100). We then concate-
nated these response patterns over time into a single spatiotemporal
response trajectory for each subject, and computed leave-one-subject-out
ISC on these spatiotemporal vectors within each story (Fig. 11; Nastase
et al., 2019a). Interestingly, we found that the response trajectories were
more similar across subjects within a given story when projected into the
shared space defined across stories. This increase in similarity was small,
from r ¼ .261 to r ¼ .286, but statistically significant across all stories (p
� .001 for all stories, nonparametric Wilcoxon signed-rank test, Bon-
ferroni corrected).

4. Discussion

We have demonstrated that connectivity hyperalignment can be used
to estimate a shared response space across disjoint datasets with unique
stimuli and non-overlapping samples of subjects. Although the shared
space is defined in terms of connectivity, the subject-specific topographic
transformation matrices are suitable for projecting response time series
into this space (Guntupalli et al., 2018). We have shown that trans-
formations derived from intersubject functional connectivity are suffi-
cient to precisely align response trajectories in a way that is both spatially
and temporally specific; in the case of time-segment classification, this
effect was consistent across all 10 stories. The features in the shared space
derived using cSRM reflect orthogonal components of response vari-
ability; projecting data into shared space dramatically increases the
dimensionality of information shared across subjects. The consensus
space introduced here conjoins diverse story stimuli, and effectively
regularizes subject- and story-specific transformations.

There are three key concepts underlying the success of this algorithm.
First, relatively coarse connectivity targets spanning cortex can provide
sufficiently rich signatures of functional connectivity to drive fine-
grained topographic alignment (Heinzle et al., 2011; Jbabdi et al.,
2013; Arcaro et al., 2015). Here we define connectivity targets according
to a multimodal cortical parcellation (Glasser et al., 2016), which yields a
relatively low-dimensional, more computationally efficient connectivity
space. However, there are a variety of ways to construct connectivity
targets (cf. Guntupalli et al., 2018); for example, in the context of natu-
ralistic stimuli, vertices with temporal ISCs exceeding some threshold
could serve as potentially finer-grained connectivity targets. The second,
related concept is that constructing a shared space based on functional
connectivity yields subject-specific topographic transformations suitable
ing performance using anatomical alignment (light gray), PCA matching the
00, 50, and 10 (orange–purple). When interpreting reduced-dimension model
sionality. We also provide within-subject decoding performance for comparison
jects, and hemispheres. Dotted horizontal lines indicate chance accuracy of
onfidence intervals estimated by resampling test subjects with replacement.



Fig. 10. Story similarity in consensus and story-
specific shared spaces. We projected AAC ISFCs esti-
mated from test data into either a shared connectivity
space (k ¼ 100) defined across all stories (across-story
cSRM) or story-specific shared connectivity spaces
(within-story cSRM). We then computed the pairwise
correlations of ISFC matrices across stories. Correla-
tion matrices were computed separately per hemi-
sphere then averaged (see Fig. S3 for correlation
matrices computed separately for each hemisphere).
The difference between these cSRMs (right) indicates
that the cSRM defined across all stories projects into a
consensus space. The average (off-diagonal) correla-
tion value for the across-story cSRM is 0.764, while
the average correlation for the within-story cSRM is
0.623; the average difference between across- and
within-story cSRM correlations is 0.145, and the
maximum difference is 0.190. See Figs. S4–8 for all
four ROIs and varying dimensionality k, as well as
Fig. S9 for effects of stimulus duration and sample
size.

Fig. 11. Intersubject spatiotemporal correlations in consensus and story-specific
shared spaces. We projected spatiotemporal response trajectories into either a
shared space defined across all stories (across-story) or story-specific shared
spaces (within-story). We then computed the intersubject correlations of these
response trajectories within each story. The y-axis indicates the average
spatiotemporal ISC across subjects and hemispheres. Error bars indicate 95%
bootstrap confidence intervals estimated by resampling subjects with
replacement.
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for aligning response time series. This may seem counterintuitive, but,
again, suggests that long-range connectivity profiles capture information
about local response topographies. Third, the datasets used here, despite
showcasing story stimuli with diverse topics and speakers, are all ex-
amples of the superordinate story-listening “task.” This common task
may yield commensurate connectivity patterns across stimuli, allowing
the algorithm to find a consensus shared space. Future work is required to
explore the boundary conditions of this algorithm and determine
whether a shared space can be defined across qualitatively different tasks
or paradigms.

Our analyses demonstrate that projecting data into a shared space
derived from functional connectivity improves semantic model-based
encoding and decoding. Interestingly, between-subject semantic model-
based decoding with cSRM exceeded within-subject decoding in all
ROIs. How can this be possible? It may be that our simplistic semantic
encoding model only captures relatively coarse-grained information
across subjects. However, between-subject encoding models allow us to
leverage much larger volumes of data than could be acquired in a single
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subject. Aggregating data across subjects can yield much cleaner training
samples, thus improving performance over limited and often noisy
within-subject data. Here, we fit the semantic encoding model on the
averaged response time series across training subjects; although aver-
aging yields clean response time series, subjects in the shared space could
instead be concatenated, dramatically increasing the number of training
samples available for modeling. Furthermore, our rudimentary fitting
procedure (e.g., using an arbitrary, fixed ridge coefficient) will neces-
sarily yield suboptimal model performance. Although we adopt this
approach to reduce the computational burden and simplify model com-
parison, it could be argued that models are not fairly compared unless
they can arrive at their own optimal ridge coefficients. For any use-case
where evaluating or comparing encoding models is the primary scientific
goal, we recommend grid search using nested cross-validation or
resampling procedures to identify optimal hyperparameters (as in, e.g.,
Huth et al., 2016).

Interestingly, our functional normalization algorithm differentially
benefited certain ROIs and certain stories. For example, EAC, an early
sensory ROI, was only marginally improved by cSRM, while downstream
association cortices such as AAC and TPOJ were more dramatically
improved. On the other hand, the putatively high-level PMC was only
modestly improved by cSRM. There are several possible reasons for these
discrepancies. First, the quality of the cSRM derives from the richness of
functional connectivity for a given ROI; early sensory areas may have
limited or less-informative connectivity with the rest of the brain,
whereas association cortices are in effect defined by their broad, inte-
grative connectivity. Second, some cortical areas may have relatively
stereotyped functional architecture across individuals or inherently
coarse response topographies; both scenarios would reduce the benefits
of functional normalization over anatomical normalization. For example,
PMC may host coarser-scale response topographies that better match
across subjects (Chen et al., 2017; Zadbood et al., 2017) than lower-level
perceptual areas (Cox and Savoy, 2003; Haxby et al., 2011). Third,
cortical areas vary in the extent to which their processing is strictly
stimulus-locked; early sensory areas may be better aligned by temporal
hyperalignment, while association cortices may be better aligned by
connectivity hyperalignment (Guntupalli et al., 2018). Certain stories,
such as “Pie Man (PNI)” and “Running from the Bronx (PNI)” seem to
have received an outsized benefit from cSRM derived across stories. We
suspect that there are two related reasons for this. First, these story
stimuli were recorded while the speaker was undergoing an fMRI scan,
resulting in relatively low audio quality. Responses to stimuli with low
audio quality may see an increased benefit with cSRM derived across
stimuli with higher audio quality. Second, the subjects in these studies
also received the “I Knew You Were Black” and “The Man Who Forgot
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Ray Bradbury” stories (both of which have high audio quality), likely
yielding more robust connectivity estimates.

All of the analyses reported here have focused on generalization
across subjects and we have not explicitly examined individual differ-
ences among subjects (Dubois and Adolphs, 2016). Although there is a
common assumption that hyperalignment methods will necessarily
quash individual differences, recent work by Feilong et al. (2018) has
shown that, despite increasing intersubject similarity, hyperalignment in
fact preserves—and increases—the reliability of individual differences.
We suspect this occurs for two related reasons: (a) hyperalignment
effectively resolves idiosyncratic functional–anatomical mapping, thus
factoring out topographic idiosyncrasies and isolating individual differ-
ences in representational geometry; and (b) hyperalignment reveals in-
dividual differences in fine-grained response topographies that are
otherwise obscured or inaccessible with anatomical alignment.
Procrustes-based hyperalignment methods are constrained to orthogonal
transformations—effectively rotating and reflecting the feature space-
—and therefore do not distort subject-specific response trajectories (or
representational geometries). Although the dimensionality reduction of
SRM will begin to distort subject-specific representational geometries at
low dimensionalities, previous work has shown that SRM can be used to
factor out shared signals, thus accentuating individual differences or
differences due to experimental manipulations (Chen et al., 2015). We
expect to see continuing developments in “neural fingerprinting” at the
intersection of hyperalignment methods and naturalistic paradigms
(Vanderwal et al., 2017; Feilong et al., 2018; Finn et al., 2019).

The approach described here has several limitations. We constrain
our analysis to a handful of ROIs and do not provide a whole-cortex
searchlight-based solution as in the core implementation of connectiv-
ity hyperalignment (Guntupalli et al., 2018). However, it would be
straightforward to extend the implementation used here to parcels tiling
the entire cortex. Unlike Guntupalli and colleagues, we take advantage of
the shared story stimulus within each dataset and use ISFC to filter out
idiosyncratic, intrinsic fluctuations and isolate stimulus-related connec-
tivity (Simony et al., 2016). This approach, however, is not applicable to
resting-state paradigms where there is no shared stimulus. Furthermore,
we do not currently account for the fact that certain stories have
considerably more subjects than others. In our implementation of cSRM,
this will tend to bias the shared space toward the stories with the most
subjects. The contribution of each story to the shared space could
conceivably be normalized by the proportion of subjects for that story
relative to the total number of subjects. However, in practice we may
want to bias the shared space toward stories with the largest number of
subjects, as these may provide the most robust shared model for limited
data.

This raises the important question of whether it is worthwhile to
“sacrifice” functional data for the purposes of normalization. We gener-
ally advocate for estimating a shared space on independent data to avoid
circularity (Kriegeskorte et al., 2009). In the current work we estimate
the shared space from the first half of all stories and use the second half
for evaluation, potentially undermining generalizability across stories.
However, we demonstrate that left-out stories still benefit from connec-
tivity SRM defined on independent data. On the other hand, many ana-
lyses (e.g., model-based encoding and decoding) already require
independent training data for model estimation. Here we adopt an
approach where both functional normalization and encoding model
weights are estimated from the same training set, effectively negating the
price paid for normalization.

Precision neuroscience is fundamentally limited by the feasibility of
collecting large volumes of data in experimental subjects (let alone pa-
tients). The fact that connectivity hyperalignment benefits a completely
independent set of subjects and stories not used to estimate the shared
space has important implications. This capacity for generalization sug-
gests that many existing datasets, from resting-state to naturalistic
movies, could benefit from connectivity hyperalignment. This provides a
means for using existing data to “bootstrap” improvements in functional
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registration and build better, more generalizable predictive models.
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