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Naturalistic experimental paradigms in neuroimaging arose from a pressure to test the validity of models we 

derive from highly-controlled experiments in real-world contexts. In many cases, however, such efforts led to the 

realization that models developed under particular experimental manipulations failed to capture much variance 

outside the context of that manipulation. The critique of non-naturalistic experiments is not a recent development; 

it echoes a persistent and subversive thread in the history of modern psychology. The brain has evolved to guide 

behavior in a multidimensional world with many interacting variables. The assumption that artificially decoupling 

and manipulating these variables will lead to a satisfactory understanding of the brain may be untenable. We 

develop an argument for the primacy of naturalistic paradigms, and point to recent developments in machine 

learning as an example of the transformative power of relinquishing control. Naturalistic paradigms should not be 

deployed as an afterthought if we hope to build models of brain and behavior that extend beyond the laboratory 

into the real world. 
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Cognitive neuroscientists employ clever experimental manipula-

ions in hopes of discovering interpretable relationships between brain,

ehavior, and the environment. There is a commitment —often im-

licit —in both our scientific thinking and writing that the models we

erive from tightly-controlled experimental manipulations will provide

ome traction in real-world contexts. This commitment relies on the as-

umption that the human brain implements a set of nomothetic princi-

les or rules that capture the underlying principles or rules by which the

orld works. We assume that these rules, like in classical physics, are

elatively simple and interpretable, and, once discovered, will extrap-

late to the richness of human behavior ( Jolly and Chang, 2019 ). We

roceed by filtering out as many seemingly irrelevant variables (consid-

red “confounds ” or “noise ”) as possible in hopes of isolating the hand-

ul of latent variables (considered “signal ”) dictating brain–behavior

elationships. To what extent do our models actually generalize out-

ide the laboratory? What proportion of neural or behavioral variability

o our models predict in real-life contexts? These kinds of questions

ave prompted the neuroimaging community, and neuroscience more

roadly, to begin adopting more naturalistic experimental paradigms

 Hasson and Honey, 2012 ; Maguire, 2012 ; Hamilton and Huth, 2018 ;

atusz et al., 2019 ; Sonkusare et al., 2019 ). 

Naturalistic paradigms have generally been considered a testbed

or models developed under highly-controlled experimental paradigms.

n neuroimaging, naturalistic stimuli were introduced optimistically
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n hopes of validating existing models ( Bartels and Zeki, 2004 ;

asson et al., 2004 ). This optimism has declined over the intervening

ears. In the following, we provide a historical context for naturalistic

euroimaging and appeal to representative design as a principled basis

or ecological generalizability ( Brunswik, 1947 ). We assume that no cog-

itive neuroscientist would be satisfied with a science strictly confined

o peculiar experimental manipulations with little relevance outside the

aboratory. However, the world outside the laboratory is not amenable

o many of the assumptions of classical experimental design; real-world

cological variables are often multidimensional, sometimes nonlinear,

nd interact in unexpected ways. To make matters worse, evolution has

uilt a brain that capitalizes on these interactions to guide adaptive be-

avior. 

To be clear, we are not arguing indiscriminately against controlled

xperiments. Experimental manipulations provide a powerful and nec-

ssary tool for testing hypotheses and models. Our argument pertains to

he source and character of these hypotheses. As experimentalists, we

ake complex phenomena and try to deconstruct them into manageable

omponents that we can more easily manipulate in our experiments.

e often bootstrap hypotheses from preexisting experimental manipu-

ations, thus superimposing the assumptions of experimental design on

he process of hypothesis formation and data generation. When data

rom the experimental manipulation adjudicate in favor of the hypothe-

is, we generally assume that we have discovered something meaningful
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1 Brunswik in fact used the term “ecological validity ” in a narrow sense to indi- 

cate the utility of a perceptual cue with respect to an ecologically-relevant state 

of the environment —modern usage more closely resembles Brunswik’s notion 

of “representative design ” ( Hammond and Stewart, 2001 ; Araújo et al., 2007 ). 
bout brain and behavior. However, when stringent design considera-

ions constrict both hypotheses and data, we risk maneuvering ourselves

nto theoretical corners that are difficult to reconcile with ecological

rain function. We argue that this necessitates a shift toward the pri-

acy of naturalistic paradigms in developing and evaluating models of

rain and behavior. 

. What problems does the brain confront outside the laboratory? 

Evolution has shaped our brains to guide behavior in a multidi-

ensional, uncertain world. The importance of this fact has been pe-

iodically reasserted in the schools of functional and ecological psy-

hology (e.g., Brunswik, 1943 ; Gibson, 1979 ), but the implications re-

ain underappreciated. We contend that many properties of the brain,

s an evolutionary solution for guiding adaptive behavior, undermine

any of the theoretical assumptions of cognitive neuroscience outlined

bove (see Hasson et al., 2020 , for an extended discussion). Evolu-

ion does not have the privilege of operating under controlled labora-

ory conditions, does not necessarily produce intuitively “optimal ” so-

utions (cf. Attneave, 1954 ; Barlow, 1961 ; Olshausen and Field, 1996 ;

ewicki, 2002 ), and does not appeal to human-interpretable design prin-

iples ( Dennett, 1995 ; Cisek, 2019 ). In the case of the brain, evolution

as converged on a high-dimensional modeling/control organ for esti-

ating whatever structure in the world is relevant for guiding context-

pecific adaptive behavior. In this respect, the brain does not operate like

 scientist, as the kind of estimation needed to guide behavior does not

ecessitate the kind of understanding scientists seek. In other words, the

rain is not necessarily designed to rely on simple, human-interpretable

ariables; it does not always cleanly segregate variables into signal and

oise; and it does not necessarily respect the theoretical boundaries im-

osed by our experimental designs. 

Ecological variables in the environment are poorly understood.

ny ecologically relevant “signal ” in the environment is multidimen-

ional and there are nonlinearities and interactions among dimensions

 Campbell, 1973 ; Cronbach, 1975 ; Gibson, 1979 ). Furthermore, ecolog-

cally relevant dimensions of the environment are always mixed with

on-relevant dimensions. The brain cannot simply ignore non-relevant

imensions; it must learn to actively adjust particular dimensions in or-

er to guide behavior. In most ecological situations, the relevant dimen-

ions for a particular action (e.g., recognizing a face, or interpreting the

eaning of words in a particular context) are always mixed with non-

elevant dimensions (e.g., luminance, motion, or occlusion of the face;

he sentence structure used or the accent of a speaker). To perform these

asks, the brain must dynamically weight and re-weight all the incoming

imensions as a function of task and context. In other words, there are

o two systems such that one processes the “signal ” and the other pro-

esses “confounds ” or “noise. ” Classical controlled experiments, where

he vast majority of these variables are artificially clamped or factored

ut, ignore one of the central problems the brain must face, and may hin-

er our understanding of the solutions the brain has found to overcome

t. It is surprisingly difficult to generalize from a contrived experiment

rtificially isolating a handful of experimental variables to other con-

exts with five, ten, or perhaps hundreds of dimensions; however this

oesn’t discourage us for interpreting experimental results more gener-

lly ( Cronbach et al., 1963 ; Yarkoni, 2019 ). 

Take for example the seminal findings of Hubel and Wiesel (1962) :

robing the visual system of the anaesthetized cat with differently ori-

nted edges reveals an orderly model of orientation tuning in primary

isual cortex. It was thought that extending this systematic program

o other stimulus features would eventually allow us to piece together

 complete model of early visual function. However, despite reveal-

ng some important insights, the limits of this program have become

ncreasingly evident. For example, work by David et al. (2004) has

emonstrated that the spatiotemporal tuning of neurons in primary

isual cortex (V1) differs substantially between naturalistic and non-

aturalistic contexts, likely due to nonlinear relationships among neural
ariables and environmental variables. Models of neural tuning derived

rom synthetic stimuli in the vein of Hubel and Wiesel may not gen-

ralize well to the real-world conditions in which our brains evolved

 Simoncelli and Olshausen, 2001 ; Kayser et al., 2004 ; Felsen and

an, 2005 ; McMahon et al., 2015 ; Park et al., 2017 ; Leopold and

ark, 2020 ). Olshausen and Field (2005 ), famously cautioned that “we

an rightfully claim to understand only 10% to 20% of how V1 actu-

lly operates under normal conditions, ” attributing this in part to biased

timulus sampling and a tendency toward easily-interpretable models. 

. Systematic and representative design 

Advocates for naturalistic paradigms often appeal to their “ecolog-

cal validity, ” a term that originated with Egon Brunswik ( Brunswik,

947, 1949 ). 1 Brunswik championed a heterodox school of psychologi-

al theory summarized as “probabilistic functionalism, ” emphasizing the

essy, probabilistic nature of organism–environment relations and the

mportance of Darwin’s notion of adaptive fitness in guiding behavior

 Tolman and Brunswik, 1935 ; Brunswik, 1943 ). Brunswik (1949) con-

ended that psychology maintains a “double standard ” in the applica-

ion of sampling theory ( Neyman, 1934 ; Kruskal and Mosteller, 1980 )

o subjects and stimuli: whereas subjects are sampled with the goal of

eneralizing to the population, stimuli and tasks generally are not. 

Brunswik challenged the paradigm of “systematic design ”—the prac-

ice of artificially reducing the world to a small number of hand-

icked variables for experimental manipulation —on grounds that it of-

en fails to actually isolate variables of interest and tends to impose non-

aturalistic relationships among variables ( Brunswik, 1955 ). In contrast,

runswik advocated for “representative design, ” arguing that we should

ample stimuli or conditions in a way that respects the distribution and

ovariance of ecological variables if we hope to achieve generalizabil-

ty beyond the boundaries of the experimental manipulation. Ecologi-

al generalizability demands a “representative sampling of situations ”

here “situational instances in an ecology are analogous to individuals

n a population ” ( Brunswik, 1955 , p. 198). Ecologically relevant config-

rations of variables carve out a manifold in a multidimensional space

f organism–environment relations. Systematic experimental manipula-

ions that clamp or orthogonalize certain variables risk unintentionally

elocating an experiment off the manifold into a peculiar region of this

pace, thus forfeiting ecological generalizability. 

Though considered heretical during Brunswik’s lifetime, the criti-

al thrust of his program has nonetheless permeated a variety of fields

 Hammond, 1955 ; Jenkins, 1974 ; Bronfenbrenner, 1977 ; Neisser and

yman, 2000 ; Fiedler, 2011 ). For example, Barker’s (1965) “ecolog-

cal psychology ” advocates for the psychologist as a “transducer ” of

sychological phenomena in situ , rather than the traditional “opera-

or/transducer ” who manipulates the environment and organism to

send messages to [them]self. ” This critique also resonates with mod-

rn statistical debates: for example, the “stimulus-as-fixed-effect ” con-

roversy in psycholinguistics ( Coleman, 1964 ; Clark, 1973 ; Baayen et al.,

008 ), social psychology ( Wells and Windschitl, 1999 ; Judd et al.,

012 ), and neuroimaging ( Bedny et al., 2007 ; Westfall et al., 2016 );

r endogenous selection bias, where a spurious relationship between

ariables of interest is induced by biased sampling along another col-

ider variable ( Elwert and Winship, 2014 ). One particular zenith along

his line of thought was Gibson’s (1979) theory of “direct perception, ”

hich forcefully elevated the environment itself to a principal object

f study in psychology, emphasizing in particular the organism- and

ontext-specific elements of the environment that offer opportunities

or adaptive behavior (i.e., “affordances ”). Despite the artificiality of

any laboratory manipulations, an organism cannot be decoupled from
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he environment in which it evolved ( von Uexküll, 1934 ; Chiel and

eer, 1997 ; Gomez-Marin and Ghazanfar, 2019 ). 

Much of cognitive neuroscience still operates in a similar regime to

ubel and Wiesel, using contrived, non-naturalistic stimuli and tasks in

opes of revealing fundamental features of functional neuroanatomy.

his analytic, reductionist program is endemic to psychology and neuro-

cience more broadly: complex, real-world phenomena are decomposed

nto increasingly circumscribed subcomponents that are manifest in

ighly-constrained experimental manipulations (cf. Braitenberg, 1984 ;

isek, 2019 ). 2 We use disjoint tasks to devise complex taxonomies of

emory (e.g., Squire, 2004 ) and attention (e.g., Carrasco, 2011 ), sub-

ividing the brain into a mosaic of regions reflecting intuitive, hand-

icked contrasts (e.g., Kanwisher et al., 1997 ; Kanwisher, 2010 ); but

arely do we reassemble these manipulations into functional, ecological

ehavior. How do these disparate systems conspire to perform complex,

eal-world behavior (e.g., summarizing a complex idea and verbally con-

eying it to a colleague, a task many readers perform every day)? The

ssumption that we can someday cobble together these piecemeal pro-

esses and representations into a satisfying model of brain and behav-

or is tenuous at best ( Newell, 1973 ; Meehl, 1990 ). Concerns about the

tility of traditional laboratory tasks are not specific to neural measure-

ents (e.g., Elliott et al., 2020 ); in fact there is increasing evidence that

any behavioral tasks have little conceptual overlap with self-report

easures and fail to capture real-world behavior (e.g., Eisenberg et al.,

019 ; Dang et al., 2020 ). 

To illustrate this point, consider working memory processes in a daily

ontext, such as reading a story, as opposed to a laboratory context, such

s a delayed match-to-sample task. In the delayed match-to-sample task,

he process of protecting information in a working memory buffer is

solated from other perceptual, decision-making, and motor-related pro-

esses by the structure of the task itself. However, in real-world contexts,

ach word we accumulate while reading a story interacts with and is syn-

hesized with all previous written or spoken words in an evolving narra-

ive ( Willems et al., 2020 ). The naturalistic reading task reveals that neu-

al systems, across all levels of the processing hierarchy, need to accu-

ulate, maintain, and synthesize information at their preferred process-

ng timescale, making the classical distinction between processing sys-

ems and memory systems intangible (see Hasson et al., 2015 ). Face per-

eption provides another illustrative example. The first step in studying

ace perception is typically to experimentally strip away cumbersome

ocial content like facial expressions, personal familiarity, and temporal

ynamics. Tightly-constrained stimulus parameterization and contrasts

ith randomized trial order reveals orderly face-selective responses in

everal cortical areas (e.g., Kanwisher et al., 1997 ; Tsao et al., 2006 ).

owever, the dynamics of face perception circuitry become consider-

bly more nuanced when presented with complex, naturalistic stim-

li, particularly in social contexts ( McMahon et al., 2015 ; Russ and

eopold, 2015 ; Park et al., 2017 ; Leopold and Park, 2020 ). Cortical ar-

as with seemingly uniform face-selective responses presumably also

ncode dynamic features that were simply not present in the decontex-

ualized, static face stimuli. In this sense, naturalistic stimuli —in which

aces are persistent, sometimes familiar, and carry dynamic social and

emantic content —allow us to better gauge the relative contributions

f different variables, and can reveal the importance of previously un-

erappreciated variables for neural representation ( Haxby et al., 2020 ).

eyond naturalistic stimuli, there is also evidence that spontaneous, nat-

ralistic behavior plays an unexpectedly large role in neural activity

hroughout the brain, including in putative low-level sensory areas (e.g.,

usall et al., 2019 ; Stringer et al., 2019 ). 
2 Bannister (1966) humorously put it: “In order to behave like scientists, [ex- 

erimental psychologists] must construct situations in which our subjects are 

otally controlled, manipulated and measured. We must cut our subjects down 

o size. We construct situations in which they can behave as little like human 

eings as possible and we do this in order to allow ourselves to make statements 

bout the nature of their humanity. ”

d  

r  

s  

u  

d  

p  

v  
. Lessons from machine learning 

Recent advances in artificial neural networks (ANNs) provide an

nstructive foil for experimental neuroscience. The machine learning

ommunity has made tremendous strides in building neurally-inspired

odels that match or exceed human performance in cognitive tasks

panning visual processing, language processing, and complex game-

lay ( LeCun et al., 2015 ). Why have neural network models developed

n the machine learning community so dramatically outstripped models

eveloped in psychology and neuroscience laboratories? 

One of the key developments was to relinquish some amount of

ontrol and embrace the complexity of real life. The machine learn-

ng community does not fixate on “experimental design ” in the way

hat neuroscientists do. They do not manufacture a small set of well-

ehaved inputs in developing their models; instead, they use vast,

argely-unconstrained training data sampled from the real world. They

o not impose the strong constraint that their models must learn

uman-interpretable representations or rules. Instead, machine learning

as —for pragmatic reasons —prioritized predictive power over easily-

nterpretable, explanatory models ( Breiman, 2001 ; Yarkoni and West-

all, 2017 ; Varoquaux and Poldrack, 2019 ). The implicit goal in most

ases is not to model an experimentally-isolated cognitive process, but

o build useful models of the phenomenon of interest out in the world.

ake for example a deep convolutional neural network for face recog-

ition that matches (and exceeds) human performance in recognizing

ace identities ( Schroff et al., 2015 ). This model is trained on face im-

ges spanning numerous identities sampled “in the wild ” to include all

anner of naturalistic “confounds ”—differences in expression, light-

ng, head angle, and so on. The same model trained on a tightly-

ontrolled subset of facial images would fail dramatically due to biased,

on-representative sampling ( O’Toole et al., 2018 ; Srivastava and Grill-

pector, 2018 ). 

The way these models learn to map noisy, real-world inputs

long objective functions to perform complex tasks resonates with

ibson’s (1979) notions of direct perception. Much like the brain, the

tructure of the fitted model is inseparable from the task(s) the model

s trained to perform in the world. We argue that the way both artifi-

ial and biological neural networks learn to pursue objective functions

leaves more toward Gibson’s (1979) notion of direct perception than,

or example, Marr’s ( 1982) constructivist, representationalist approach

 Brooks, 1991 ; Pezzulo and Cisek, 2016 ; Hasson et al., 2020 ). In the

ame way that evolutionary theory shifted our understanding of biol-

gy to a few relatively simple processes and principles, the effectiveness

f artificial neural networks in learning cognitive tasks may force us to

ethink the neural code (see Richards et al., 2019 , and Hasson et al.,

020 ). The recent success of neural networks in solving many of the

asks we study in cognitive neuroscience serves as a cautionary tale for

hose probing the brain for easily-interpretable representations. 

. Studying ecological brain function without losing control 

Most psychologists and neuroscientists are trained to respect the pri-

acy of experimental control. We celebrate the ingenuity of tasks that

anage to isolate a handful of interpretable variables from confounds.

hen a particular task or manipulation fails to elicit the desired effect,

e often adjust the task or fine-tune the manipulation in hopes of hom-

ng in on the effect. This research program hinges on the assumption

hat the brain extrapolates from a number of human-interpretable rep-

esentations and processes to navigate the world; and that using clever

esigns to experimentally isolate the neural implementation of these

ules will allow us to extrapolate to ecological behavior. With these as-

umptions in hand, we consider tightly-controlled experimental manip-

lations as the principal (perhaps only) source of insight into the un-

erlying neural code ( Gillis and Schneider, 1966 ), whereas naturalistic

aradigms are treated as a necessary (albeit inconvenient) testbed for

alidating these theories. But what if these assumptions are unsound?
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H

hat if nonlinearities and interactions among environmental variables

amstring generalization from contrived experiments? What if biologi-

al systems rely more on exhaustive sampling and brute-force interpo-

ation rather than rule-based extrapolation? How is the cognitive neu-

oscientist to proceed? 

Naturalistic paradigms are not a panacea and are not trivial to imple-

ent or analyze. We do believe there is value in using controlled experi-

ents to test hypotheses, but contend that these hypotheses should stem

rom ecological considerations and address head-on the actual problems

he brain confronts in the world. Controlled experiments can reveal im-

ortant boundary conditions of ecological brain function, and no single

aradigm can be exhaustively representative or generalizable. However,

e believe that non-naturalistic experimental manipulations have occu-

ied an overly privileged position in cognitive neuroscience. 

We caution against allowing classical experimental manipulations

o play an outsized role in hypothesis formation. For example, if the

oal is to differentiate neural systems processing articulatory and se-

antic features of words, rather than using tightly-controlled lists of

ords and nonwords, we recommend using natural speech stimuli and

omparing models of articulation and semantic content (e.g., de Heer

t al., 2017 ). When designing an experiment, we recommend, when-

ver possible, to use naturalistic tasks and to sample stimuli and condi-

ions (including controls) from ecological contexts; for example, lever-

ging each subject’s personal social network ( Parkinson et al., 2017,

018 ; Hyon et al., 2020 ), probing memory using naturalistic recall

 Chen et al., 2017 ; Zadbood et al., 2017 ; Heusser et al., 2018 ), com-

aring natural language across modalities and contexts ( Stephens et al.,

010 ; Regev et al., 2013 ; Yeshurun et al., 2017 ; Deniz et al., 2019 ),

nd using data-driven modeling to capture the complexity of naturalis-

ic neural responses ( Haxby et al., 2011 , 2020 ; Baldassano et al., 2017 ;

hang et al., 2018 ; Nastase et al., 2019 ). Appealing to representative

ampling in experimental design will tend to introduce (ecological) in-

ercorrelations among variables, and may reduce statistical power for

ow-frequency phenomena ( Hamilton and Huth, 2018 ); in this sense,

aturalistic paradigms may resemble observational research, and may

enefit from the associated methods (e.g., Rohrer, 2018 ). Our thesis,

owever, is that anyone adopting the alternative approach —clamping

r and artificially orthogonalizing these variables —must contend with

he challenge of ecological generalizability. 

Building a more ecological research program demands increasingly

ich data and quantitative tools for describing brain, behavior, and envi-

onment. Publicly shared naturalistic datasets (e.g., Hanke et al., 2014 ;

astase et al., 2019 ) have exceptional re-use value and can serve as

enchmarks for model comparison ( DuPre et al., 2019 ). These datasets

ill eventually become exhausted as competing models improve and

each ceiling performance; data generators will never be out of work

nd there will always be a market for innovations in data acquisi-

ion. Developing technologies, such as continuous intracranial elec-

roencephalography (iEEG; e.g., Wang et al., 2016 ), functional near-

nfrared spectroscopy (fNIRS; e.g., Liu et al., 2017 ), high-density dif-

use optical tomography (HD-DOT; e.g., Fishell et al., 2019 ), and wear-

ble magnetoencephalography (MEG; Boto et al., 2018 ) promise higher-

delity and more ergonomic neuroimaging. Even the workhorse fMRI

s beginning to see increased adoption of immersive virtual reality

aradigms ( Mathiak and Weber, 2006 ; Spiers and Maguire, 2006 , 2007 ;

aguire, 2012 ). Finally, we are seeing advances in quantifying the

ichness of natural behavior ( Gomez-Marin et al., 2014 ; Calhoun and

urthy, 2017 ; Nath et al., 2019 ; Pereira et al., 2019 ). We live in an age

f ubiquitous real-life behavioral data collection (for better or worse);

xperience sampling technologies such as mobile sensing ( Miller, 2012 ;

arari et al., 2016 ) provide new windows into naturalistic behav-

or, and can be used to procure subject-specific representative stimuli

 Nielson et al., 2015 ; Rissman et al., 2016 ). 

In the context of representative design, Brunswik contends that the

challenge of further [isolating variables] must be met by after-the-

act, mathematical means ” ( Brunswik, 1955 , pp. 202–203). This res-
nates with the more recent notion of “late commitment ” in cogni-

ive neuroscience ( Kriegeskorte et al., 2008 , p. 19), wherein theoret-

cal assumptions are relaxed at the stage of experimental design and

ata collection, and later imposed at the analysis stage. Representative

esign is also conducive to a “system identification ” approach for map-

ing between formal models of the environment and neural responses

 Wu et al., 2006 ; Naselaris et al., 2011 ; Gallant et al., 2012 ; Nunez-

lizalde et al., 2019 ). In this framework, explicit models capturing,

.g., visual or semantic content ( Nishimoto et al., 2011 ; Huth et al.,

012 , 2016 ) are constructed to predict brain activity from naturalistic

timuli or tasks. In both of these frameworks, hypotheses are formal-

zed as explicit models of the stimulus or task, and the relative quality

f a given model is quantified in terms of its accuracy in predicting

eural responses to novel input. Commonality analysis ( Mood, 1971 ;

eibold and McPhee, 1979 ) provides a statistical framework for parti-

ioning variance due to combinations of variables and has been deployed

or both voxelwise encoding models (e.g., Lescroart et al., 2015 ; de Heer

t al., 2017 ) and pattern-based representational similarity analysis (e.g.,

roen et al., 2018 ; Hebart et al., 2018 ). Adopting a prediction-oriented

ramework with an emphasis on accounting for variance in real-world

ontexts may help combat the reductionism inherent in contrived exper-

mental manipulations and simple models ( Yarkoni and Westfall, 2017 ;

aroquaux and Poldrack, 2019 ). 

We can summarize these examples into several concrete recommen-

ations, many of which are reflected in the exceptional body of work

resented in this special issue: (1) formulate hypotheses with ecologi-

al considerations in mind; (2) rather than constraining data collection,

ample brain activity under representative contexts for the ecological

ehaviors you wish to study; (3) find manipulations for characterizing

he boundary conditions that naturally emerge in real-life contexts; (4)

hen possible, formalize hypotheses as explicit models capable of mak-

ng quantitative predictions of neural activity under the most natural-

stic conditions possible; (5) interrogate your models with the goal of

nderstanding not only the neural data, but also the structure of the

ask, stimulus, or environment; (6) use your insights to generate new

redictions to be tested in real-life contexts or under more controlled

onditions as necessary. 

. Conclusion 

We hope our argument has punctuated the fundamental tension be-

ween experimental control and ecological generalizability. We cannot

aively decompose organism–environment relations into contrived ex-

erimental manipulations in hopes of recomposing them into a satisfy-

ng understanding of ecological brain function. By dogmatically adher-

ng to systematic design, we risk creating a cognitive neuroscience of

ontrived experimental manipulations that have little meaning outside

he laboratory —confining ourselves to what Brunswik (1947, p. 110) re-

erred to as “a self-created ivory-tower ecology. ” Naturalistic paradigms

hould not be relegated to post hoc model validation —they should pro-

ide a foundation from which theories are developed ( Hasson et al.,

020 ). Moving toward a more ecological cognitive neuroscience is not

imply a matter of plugging more realistic stimuli into our usual exper-

ments, but stepping outside our usual mode of inquiry and reframing

ur questions to encompass the nested dynamics of brain, body, and

nvironment ( Gomez-Marin and Ghazanfar, 2019 ). We are optimistic

hat adopting an ecological perspective will not only complement our

xisting models, but revolutionize them. 
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