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Abstract

■ This study examined how the brain dynamically updates
event representations by integrating new information over mul-
tiple minutes while segregating irrelevant input. A professional
writer custom-designed a narrative with two independent story-
lines, interleaving across minute-long segments (ABAB). In the
last (C) part, characters from the two storylines meet and their
shared history is revealed. Part C is designed to induce the spon-
taneous recall of past events, upon the recurrence of narrative
motifs from A/B, and to shed new light on them. Our fMRI results

showed storyline-specific neural patterns, which were reinstated
(i.e., becamemore active) during storyline transitions. This effect
increased along the processing timescale hierarchy, peaking in
the default mode network. Similarly, the neural reinstatement
of motifs was found during Part C. Furthermore, participants
showing stronger motif reinstatement performed better in inte-
grating A/B and C events, demonstrating the role of memory re-
activation in information integration over intervening irrelevant
events. ■

INTRODUCTION

Real-life events unfold overmultipleminutes. Using real-life
stimuli such as stories and movies, previous studies have
revealed a cortical hierarchy of timescales that synthesize
information over increasing temporal receptive windows
(TRWs; Baldassano et al., 2017; Yeshurun, Nguyen, &
Hasson, 2017; Chen et al., 2016; Honey, Thesen, et al.,
2012; Lerner, Honey, Silbert, & Hasson, 2011). To address
these findings, we proposed a process-memory model
(Hasson, Chen, & Honey, 2015). Unlike classic theories of
working memory, which distinguish between areas that
process incoming information and working memory
buffers that accumulate and protect the processed informa-
tion (Cowan, 2008; Baddeley, 2003), the process-memory
model posits that all cortical areas actively sustainmemories
while dynamically synthesizing them with newly arrived in-
put at their preferred timescales. Namely, early sensory
areas integrate information over short timescales of tens
of milliseconds, coinciding with the duration of phonemes
and words. Adjacent areas along the superior temporal cor-
tex integrate information over hundreds of milliseconds,
coinciding with the duration of single sentences, whereas
high-order areas, which overlap with the default mode net-
work (DMN; Buckner, Andrews-Hanna, & Schacter, 2008;

Raichle et al., 2001), integrate information across para-
graphs as the narrative unfolds over many minutes. This
framework illustrates a simple recurrent mechanism for
continuous event updating in long processing timescale
areas at the top of the hierarchy. However, in real life, we
often have to integrate discontinuous pieces of information
to develop a full understanding of an event. This raises the
question of how areas with long processing timescales inte-
grate incoming information with relevant past events,
while, at the same time, preserving the accumulated infor-
mation and protecting it from being integrated with irrele-
vant current events.
To probe this question, we collaborated with a profes-

sional author (C. L.) to craft an original fictional story with
a purposefully designed narrative structure. The first part of
the narrative consisted of two seemingly unrelated story-
lines, A, which takes place in Los Angeles, employing one
set of characters, and B, which takes place in New York
and involves a distinct set of characters (Figure 1). The
two storylines were presented in an interleaved fashion over
30 segments, 15 segments for each storyline (A1B1A2B2…
A15B15). In the last 15 segments (Part C), characters from
the two storylinesmeet inNewYork and their shared history
is revealed. In otherwords, Part C updates the two storylines
with new information previously unknown to the audience.
One of the main techniques for bridging Part C with Parts
A and B was to embed specific images/situations/phrases,
that is, narrative motifs, within either the A or B storylines.
The recurrence of these motifs in Part C was designed to1Princeton University, 2Columbia University, 3Tel Aviv University
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reinstate specific moments from Storylines A and B. For
example, in Segment A1, the main character, Clara, makes
homemade chili for her husband in Los Angeles (LA). In
Part C, Clara eats and comments on a Storyline B character’s
(Steven’s) homemade chili recipe, which is designed to re-
activate the memory of Segment A1 and update it by reveal-
ing that Clara was making chili following Steven’s example.
To develop a full understanding of this story, the listeners
need to piece together a series of clues (motifs and story-
lines) like a detective.
We hypothesized that, within individual A/B segments,

high-level cortical regions would integrate information
over time (i.e., they would show processmemory) to build
up a representation of the ongoing situation. In keeping
with event segmentation theory (Zacks & Swallow, 2007;
Zacks et al., 2001), we further hypothesized that storyline
switches would result in “flushing out” of the previous
storyline’s representation in high-level cortical regions
(see also Chien & Honey, 2020; DuBrow, Rouhani, Niv,
& Norman, 2017; Ezzyat & Davachi, 2011), making it pos-
sible for that region to start representing the features of
the other storyline. We also hypothesized that episodic

memory would play a key role in reinstating existing
storyline representations when the narrative returned to
those storylines.

These hypotheses led to the following predictions
about the A/B period of the story: First, we predicted that
high-level cortical regions would contain distinct neural
representations for the A and B storylines, as the storylines
depict different situations and (according to the event seg-
mentation theory) these distinct situation models will be
flushed out at storyline switches, minimizing “carryover”
of the neural patterns. Second, we predicted that hippo-
campus would be engaged at storyline switches to reacti-
vate stored episodic memories of the relevant storyline
and that the degree of hippocampal engagement would
predict the degree of activation of the relevant storyline
representation; we measured hippocampal engagement
using hippocampal–cortical intersubject functional corre-
lation (ISFC; Simony et al., 2016). In a previous study
(Chen et al., 2016), we observed stimulus-driven ISFC be-
tween hippocampus and DMN cortical regions when the
participants resumed a movie after a 1-day break; here,
we tested whether hippocampal–cortical connectivity

Figure 1. Stimulus and design.
(A) The stimulus is a spoken
narrative composed of 45
segments with two storylines,
A and B. Storylines A and B
interleave in the first 30
segments and converge in
the last 15 segments (Part C).
(B) Predicted similarity matrix
between brain responses to
the 45 segments.
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would also facilitate the reinstatement of recent memories
fromminutes ago as listeners switch from one storyline to
the other. Finally, we predicted that neural representa-
tions of the A and B storylines would becomemore distinct
over the course of the narrative, reflecting the accumula-
tion (across segments) of distinctive details pertaining to
each segment.

During part C, we hypothesized that the recurrence of
motifs from the A/B storylines (e.g., the chili recipe) in Part
C would induce spontaneous recall of related past events
and that recalling these A/B events (in response to amotif )
would help participants to understand the relationship be-
tween the A/B segments and the narrative in Part C. To test
this, we quantified the “reminding” effect during Part C by
measuring whether motifs triggered neural reinstatement
of corresponding moments in A/B events. To look at how
this affected behavior, we computed a “relation score”
(using a postscan test) that specifically tracked partici-
pants’ understanding of how the motifs connected A/B
events with the narrative in Part C. We predicted that,
across participants, the degree of neural A/B reinstatement
triggered by motifs would be correlated with these behav-
ioral relation scores.

Our study is not the first to examine the interleaving of
storyline representations and the recurrence of narrative
motifs with fMRI. In one relevant study, Milivojevic,
Varadinov, Vicente Grabovetsky, Collin, and Doeller
(2016) used an audiovisual movie with interleaved story-
lines (“Sliding Doors”) and found coding of storyline infor-
mation in the hippocampus (but not in the DMN areas that
are the focus of our study). In another relevant study,
Kauttonen, Hlushchuk, Jääskeläinen, and Tikka (2018)
scanned participants who watched the movie “Memento,”
in which recurring cues were embedded to triggermemory
recall, similar to the motifs in our story; they found that
recurring scenes activated matching, scene-specific neural
patterns in low-level sensory regions and also that there
was a common (i.e., not-scene-specific) neural pattern that
was evoked in DMN regions whenever participants viewed
a scene for a second time.

An important difference between our study and these
other studies is that they used preexisting narrativemovies
as stimuli, whereas we used a stimulus that was custom-
crafted to address the hypotheses enumerated above.
Our use of a custom-crafted stimulus allowed us to build
on these prior studies while avoiding confounds that were
present in these other studies. A limitation of the design of
Milivojevic et al. (2016) is that storyline differences were
confounded with sensory differences (e.g., related to
some locations beingmore prevalent in one storyline than
the other). Our study resolves this confound because both
storylines were presented auditorily by the same speaker
and thus did not differ in low-level sensory properties.
Likewise, a limitation of the design of Kauttonen et al.
(2018) is that recurring scenes were repeated exactly; as
such, pattern similarity between matching cues could be
because of matching sensory inputs (as opposed to

memory). In contrast, in our study, recurring motifs were
embedded in different scenes, making it easier to distin-
guish between the influences of perception and memory.
By eliminating these confounds while still providing an
engaging stimulus, we hoped to provide a more detailed
view of how incoming information is segregated from
irrelevant memories and integrated with relevant memo-
ries as a narrative unfolds over time.

METHODS

Participants

Twenty-eight participants were recruited. They were all
right-handed native English speakers. All participants
provided written consent forms before the experiment.
Twenty-five participants were included for further analyses
(14 women, aged 18–40 years). Three were excluded: one
because of anatomical anomalies, one because of exces-
sivemotion artifacts in T1 image, and onewho slept during
the story. The experimental protocol was approved by the
institutional review board of Princeton University.

Stimulus

The stimulus was created by Lazaridi (“The 21st Year”—
Excerpt, copyright 2019), who has been in collaboration
with our laboratory for a number of years (Yeshurun,
Swanson, et al., 2017). She has years of experience in prac-
ticing and evolving the technique of organizing the audi-
ence’s understanding, memory, and interpretation of a
narrative through screenplay writing and professional
screenplay development around the world (Lazaridi,
2012). Compared to other types of writing, the creation
of a screenplay is highly audience-driven because of the
large investment (in time, collaboration, and financing)
inherent in film-making. Furthermore, watching a film
isa more continuous experience than reading a book, re-
quiring the screenwriter to guide and unite the audience’s
understanding and overall response to the narrative with-
out loss of focus or inner thought digressions.
Lazaridi designed the narrative stimulus as a stand-alone

fiction text that incorporated her experience-guided narra-
tive techniques of traditional screenplay writing. The
narrative consisted of 45 segments and two seemingly
unrelated storylines, A and B. A and B segments were pre-
sented in an interleaved manner for the first 30 segments.
In the last 15 segments (Part C), the two storylines merged
into a unified narrative. Each segment lasted for 41–57 rep-
etition times (TRs; mean: 46 TRs = 70 sec). They were
separated by silent pauses of 3–4 TRs. The narrative was
recorded by a professional actress (June Stein), who is a
native English speaker, and directed by Lazaridi to ensure
that the actor’s interpretationmatched the author’s intent.
The recording is 56 min long. In the A and B segments, the
author incorporated unique narrative motifs, that is,
specific images/situations/phrases that recurred in Part C
(see Figure 1 for a sample motif ). The transcription of
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the story and a list of all the motifs are available at arks.
princeton.edu/ark:/88435/dsp011n79h7374. The recur-
rence of motifs in Part C is designed to trigger the rein-
statement of specific moments from Part AB, to evolve
their meanings with new information from Part C. The
same narrativemotif was not always realized with the same
words ("throwing up” vs. “Clara feels sick, as the coffee-
cake rises to her throat”). In total, there were 28 different
narrative motifs, occurring 58 times in Part AB and 36
times in Part C.

Procedure

The recording of the narrative was presented using
MATLAB 2010 (The MathWorks, Inc.) and Psychtoolbox
3 (Brainard, 1997) through MRI-compatible insert ear-
phones (Sensimetrics, Model S14). MRI-safe passive
noise-canceling headphones were placed over the ear-
buds for noise reduction and safety. To remove the initial
signal drift and the common response to stimulus onset,
the narrative was preceded by a 14-TR long musical stim-
ulus, which was unrelated to the narrative and excluded
from fMRI analysis. Participants filled a questionnaire after
the scanning, to evaluate their overall comprehension of
the narrative and their ability to relate events in different
parts of the story that shared the same motifs.

MRI Acquisition

Participants were scanned in a 3-T full-body MRI scanner
(Skyra, Siemens) with a 20-channel head coil. For functional
scans, images were acquired using a T2*-weighted EPI
pulse sequence (TR = 1500 msec, echo time = 28 msec,
flip angle = 64°), with each volume comprising 27 slices
of 4-mm thickness with 0-mm gap; slice acquisition order
was interleaved. In-plane resolution was 3 × 3 mm2 (field
of view = 192 × 192 mm2). Anatomical images were
acquired using a T1-weighted magnetization prepared
rapid gradient echo pulse sequence (TR=2300msec, echo
time = 3.08 msec, flip angle = 9°, 0.86 × 0.86 × 0.9 mm3

resolution, field of view = 220 × 220 mm2). To minimize
head movement, participants’ heads were stabilized with
foam padding.

MRI Analysis

Preprocessing

MRI data were preprocessed using FSL 5.0 (fsl.fmrib.ox
.ac.uk/) and NeuroPipe (github.com/ntblab/neuropipe),
including Brain Extraction Tool brain extraction, slice time
correction, motion correction, high-pass filtering (140-sec
cutoff ), and spatial smoothing (FWHM = 6 mm). All data
were aligned to standard 3-mm Montreal Neurological
Institute (MNI) space (MNI152). Only voxels covered by all
participants’ image acquisition area were included for
further analysis.

After preprocessing, the first 19 TRs were cropped to
remove themusic preceding the narrative (14 TRs), as well
as the time gap between scanning and narrative onset
(2 TRs), and to correct for the hemodynamic delay (3 TRs).
To verify the temporal alignment between the fMRI data
and the stimulus, we computed the temporal correlation
between the audio envelop of the stimulus (volume) and
the participants’ mean brain activation in left Heschl’s
gyrus following Honey, Thompson, Lerner, and Hasson
(2012). The left Heschl’s gyrus mask was from Harvard-
Oxford cortical structural probabilistic atlases (thresholded
at 25%). The audio envelope was calculated using a
Hilbert transform and down-sampled to the 1.5-sec TR.
The correlations were computed with a lag of −100 to 100
TRs to find the time lag that showed the highest correla-
tion. The averaged peak time was 0.12 TR across partici-
pants, indicating that the narrative and fMRI data were
temporally well aligned.

To account for the low-level properties of the stimulus, a
multiple regression model was built for each voxel. The
regressors included an intercept, the audio envelope,
and the boxcar function of the between-segment pauses,
convolved by the canonical hemodynamic response func-
tion and its derivatives with respect to time and dispersion
as given in SPM8 (www.fil.ion.ucl.ac.uk/spm/). For the
effect of audio amplitude and between-segment pause,
please see Appendix A. The residuals of the regression
model were used for the following analyses.

ROI Masks

We used 238 functional ROIs defined independently by
Shen, Tokoglu, Papademetris, and Constable (2013) based
on whole-brain parcellation of resting-state fMRI data. A
control anatomical ROI was also included: left Heschl’s
gyrus defined using the Harvard-Oxford cortical structural
probabilistic atlas, thresholded at 25%.

A bilateral anatomical hippocampal mask was obtained
using the same threshold. It has been proposed that the
temporal integration window of episodic memory repre-
sentation varies along hippocampal long axis (Collin,
Milivojevic, & Doeller, 2015). Whereas the posterior hip-
pocampus has a small representation scale, the middle
and anterior portions are able to contain the associations
between more than two events. If so, it would be inappro-
priate to treat hippocampus as a functionally homogenous
region. Therefore, we divided the hippocampus mask into
anterior (MNI coordinate y > −19), middle (−30 < y ≤
−19), and posterior ( y ≤ −30) parts of ROIs following
Collin et al. (2015).

All ROIs had more than 50 voxels in our data.

Shared Response Model

When comparing activation patterns across participants, the
mismatch of functional topographies could decrease analy-
sis sensitivity even after anatomical alignment (Sabuncu
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et al., 2010; Brett, Johnsrude, &Owen, 2002). Therefore, we
functionally aligned data within each ROI across participants
using the shared response model (SRM; Brain Imaging
Analysis Kit, brainiak.org; Chen et al., 2015). SRM projects
all participants’ data into a common low-dimensional feature
space by capturing the components of the response shared
across participants. The input to SRM was a TR × Voxel ×
Participant matrix, and the output was a TR × Feature ×
Participant matrix. We used fMRI data from the whole story
(z scored over time first) to estimate an SRM with 50 fea-
tures. Note that no information about storyline or motif
was submitted to SRM. Therefore, although this projection
inflated the overall interparticipant pattern similarity, it
could not artifactually give rise to the storyline or motif effect
shown here. The output of SRM was z scored over time.
Unless otherwise stated, all the pattern analyses described
below were run based on the resulting 50 features.

We also performed the same analyses without the appli-
cation of SRM. Generally speaking, a subset of the areas
that were significant in the analysis with SRM was also sig-
nificant in the analysis without SRM. Please see Appendix B
for the results.

Representational Similarity Analysis of Storyline Effect

To examine the storyline effect, we performed representa-
tional similarity analysis (RSA) (Kriegeskorte, Mur, &
Bandettini, 2008) on brain activation patterns and tested
whether the representational similarity between segments
from the same storyline was higher than that of segments
from different storylines. We first computed the averaged
activation within each segment across TRs for each voxel.
The resulting 45 values were then z scored across seg-
ments. For each ROI, pairwise pattern similarities between
the 45 activation maps were computed with the leave-one-
participant-out method (Figure 1B). Namely, the averaged
activation pattern was extracted for each segment. Then,
the Pearson correlation coefficients between one partici-
pant’s activation patterns and the averaged patterns of
the remaining participants were computed. The output
correlation coefficients (45 × 45 segments) were normal-
ized with Fisher’s z transformation. This procedure was
repeated for each of the 25 participants and each ROI.

We then contrasted the averaged within- and between-
storyline similarities in Part AB, excluding the within-
segment similarities (the diagonal of the 45 × 45 similarity
matrix), to obtain 25 contrast values for each ROI. These
contrast values were compared to zero by a one-tailed one-
sample t test and thresholded at p < .05 (FWE correction
for multiple comparisons). The results were projected
back onto the whole-brain surface and visualized using
Freesurfer v6 (surfer.nmr.mgh.harvard.edu/).

To examine whether the storyline effect increased over
time, for regions showing a significant storyline effect, we
computed the storyline effect in the early (Segments
1–14) and later (Segments 15–30) halves of Part A/B sepa-
rately. Twenty-five contrast values were generated by

comparing the late and early storyline effects (late [same >
different storyline] > early [same > different storyline]).
These contrast values were again submitted to a one-tailed
one-sample t test ( p < .05, FWE).
To test the Storyline× Time effect in a more gradedway,

we constructed a 45×45 time effectmatrix, populatedwith
the average of the time points (segment number). For ex-
ample, the (4, 5) entry of this matrix is 4.5 (= [4 + 5] / 2).
Taking only the entries corresponding to within-storyline
similarity, excluding the diagonal elements (Appendix C,
top), we computed the Pearson correlation between the
time matrix and the pattern similarity matrix. The resulting
r values were entered into a one-sample one-tailed group
t test after Fisher’s z transformation within regions showing
significant storyline effect (n = 25, p < .05, FWE). The
between-storyline dissimilarity was tested separately in a
similar manner. The overlap between these two effects
was shown in the bottom of Appendix C.

Time Course of the Storyline Effect at Segment Boundary

To further illustrate the time course of the storyline effect,
we computed the pattern similarities between each of the
−40 to 40 TRs around segment onsets and the typical A
and B storyline patterns using a leave-one-participant-out
method. For example, for the boundary between Segment
1 and Segment 2, −40 to 40 TRs around the onset of
Segment 2 were extracted from one participant. The typi-
cal A storyline pattern was obtained by averaging all the A
storyline TRs, except for the segments analyzed here,
namely, Segments 1 and 2, from the rest of the partici-
pants. The typical B storyline pattern was obtained in the
same manner. Pearson correlations between the 81 TRs
around Segment 2 onset and the typical A and B patterns
were calculated and normalized with Fisher’s z transfor-
mation. The same procedure was repeated for each partic-
ipant and each boundary.
To further illustrate the Time × Storyline effect, we

applied the above analysis to the early and late segments
separately. Namely, typical A and B patterns were com-
puted using early and late segments, respectively. TRs
around the boundaries between early segments were
compared with the early templates, and TRs around the
boundary between the late segments were compared
with the late templates.

TRW Index

Following Yeshurun, Nguyen, et al. (2017), the TRW index
was generated based on an independent data set from
Lerner et al. (2011), which includes an intact story
(“Pieman,” ∼7 min long) and the same story with a scram-
bled word order. Interparticipant correlation between
averaged time series of each ROI was computed, using the
leave-one-participant-out method, and normalized using
Fisher’s z transformation. TRW index was then calculated by
subtracting the inter-subject correlation of the scrambled
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story from that of the intact story. We examined the corre-
lation between TRW and storyline effect across regions.

RSA of Narrative Motif Effect

For each narrative motif occurrence, we obtained the cor-
responding activation pattern by averaging 5 TRs immedi-
ately after its onset based on the intuition that motif effect
was transient and lasted only for a few sentences. Pearson
correlation coefficients between activation patterns of mo-
tifs in Part AB andmotifs in Part C were computed with the
leave-one-participant-out method and normalized with
Fisher’s z transformation. Pattern similarities between nar-
rative motifs were grouped into three types: (1) same
motif, (2) different motifs from the same storyline, and
(3) different motifs from different storylines (unrelated).
For example, pattern similarities between different occur-
rences of “chili” belong to (1). Similarities between “chili”
and other A storyline motifs belong to (2). Similarities
between chili and B storyline motifs belong to (3). Motif ef-
fect of each “chili” token in Part C was defined as the aver-
aged Type (1) similarity minus the averaged Type (2)
similarity, to eliminate the confound of storyline effect.
The group motif effect was thresholded with a permu-

tation test. For each ROI, the above procedure was re-
peated after shuffling the labels of motifs within storylines
10000 times, creating a null distribution. To correct for
multiple comparisons across ROIs, the largest motif effect
across ROIs in each of the 10000 iterations was extracted,
resulting in a null distribution of the maximum motif
effects. Only ROIs with a group motif effect exceeding
95% of the null distribution were considered significant
( p< .05, FWE).

Motif-Related Events with Shared vs. Different
Main Characters

To verify that the motif effect does not only reflect shared
characters, the author of the story designated the main
character in each motif-related event and a predicted pat-
tern similarity matrix was generated based on whether two
events shared the same character. We ran a permutation
test similar to the one described above and found no sig-
nificant character effect ( p < .05, FWE; Appendix D).

Time Course of the Narrative Motif Effect

To further illustrate the time course of the motif effect, for
each motif in C, the Pearson correlation coefficients be-
tween activation patterns of−5 to 10 TRs around its onset
and the activation patterns of motifs in Part AB were com-
puted. Motifs with a time window of −5 to 10 TRs that
overlapped with the between-segment silent pauses were
excluded from this analysis. The resulting coefficients
were normalized with Fisher’s z transformation and aver-
aged by categories (same motif and same storyline, differ-
ent motif but same storyline, and unrelated). For each

ROI, we applied two-tailed paired t tests to compare
pattern similarities between categories at each time point
( p< .05, FWE correction for time points) and showed the
resulting pattern similarity around narrative motif onset.

Narrative Motif vs. High-Frequency Word Effect

To verify that the motif effect did not result from repeated
wordings or word-level semantics, we replaced the narra-
tive motifs with storyline-specific high-frequency words
and performed the same RSA. More specifically, among
words that only occurred in Parts A and C and words that
occurred only in Parts B and C, we chose the 28words with
the highest lemma/word stem frequencies (Appendix E).
Two of the 28 narrative motifs were included in this list.
Together, these words occurred 111 times in Part AB and
110 times in Part C. Among regions showing a significant
motif effect, we calculated the difference between the real
motif effect and the effect elicited by high-frequency words
for each participant. The 25 difference values were entered
into a one-sample one-tailed t test. The results were thresh-
olded at p < .05 (FWE).

Within-Participant RSA of the Storyline and Motif Effect

On the basis of our prior work showing that between-
participant analysis is able to reveal the shared coding of
events across participants (Baldassano, Hasson, &
Norman, 2018; Baldassano et al., 2017; Chen et al., 2017;
Zadbood, Chen, Leong, Norman, &Hasson, 2017) and that
it also boosts signal-to-noise ratio (SNR; Simony et al.,
2016), we adopted between-participant RSA as our
“default” in this study; however, we also included within-
participant RSA for comparison purposes.

The results of our within-participant RSA analyses are
shown in Appendices F–I. Considering the potential
impact of temporal autocorrelation (Mumford, Davis, &
Poldrack, 2014) and low-frequency drift (Alink, Walther,
Krugliak, van den Bosch, & Kriegeskorte, 2015) in the
fMRI signals on within-participant similarity matrix, espe-
cially between neighboring segments, we also included
storyline analyses thresholded using the label permutation
method (Appendix J). For the storyline effect, we shuffled
the labels of Segments 1–30 10000 times to obtain a null
distribution of the group mean effect. This procedure was
performed for each ROI, and the resulting p value was cor-
rected for multiple comparisons across ROIs (FWE). The
Storyline × Time effect was tested within regions that
showed a significant storyline effect by shuffling segment
labels within storylines.

Correlation between Hippocampal–Cortical ISFC and
Cortical Reinstatement of Storyline and Motif

To examine whether the cortical reinstatement of storyline
was dependent on connectivity with the hippocampus, we
examined the Pearson correlation between hippocampal–
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cortical ISFC (Simony et al., 2016) and the storyline effect
across segments for each participant, within ROIs showing
a significant storyline effect.

The ISFCwas computedwithin the timewindowof 0–40
TRs after the onset of each segment using the leave-one-
participant-out method, that is, the correlation between
one participant’s hippocampal activity and the averaged
cortical activity of the other participants. We used the pre-
processed data without regressing out the effects of
between-segment pause and the audio envelope because
it is possible that the activation pulse between segments
(Appendix A) does reflect not only the silence but also
memory encoding or retrieval (Ben-Yakov & Dudai,
2011). SRM was not applied because topographical
alignment is not a concern when comparing the averaged
time series between ROIs. The hippocampus seed was de-
fined using the Harvard-Oxford cortical structural probabi-
listic atlas thresholded at 25%.

The storyline effect for each segment was also computed
using the leave-one-participant-out method. The typical
activation patterns for A andB storylineswere first estimated
by averaging data from all but one participant, excluding the
current segment. Pattern similarity between the resulting
typical A and B patterns and the left-out participant’s activa-
tion pattern for the current segment was then computed.
The storyline effect was defined as the difference between
pattern similarity to the relevant storyline and the similarity
to the irrelevant storyline, taking the previous segment as
the baseline, for example, for a B segment: (current seg-
ment’s similarity to B − similarity to A) − (previous seg-
ment’s similarity to B − similarity to A).

The correlation between ISFC and the storyline effect
across segments was computed for each participant, ex-
cluding the first segment of each storyline. The r values
were entered into a one-tailed t test after Fisher’s z trans-
formation. This initial analysis did not yield a significant re-
sult after correction for multiple ROIs (n = 25, p < .05,
false discovery rate [FDR] correction). In exploratory
follow-up analyses, we then systematically examined the
influence of the time window of ISFC, the time window
of the storyline effect, the hippocampus seed (whole vs.
posterior: MNI y ≤ −30), and the baseline of the storyline
effect. We also examined the correlation across partici-
pants in each segment. For each combination of analysis
parameters, we corrected for multiple comparisons across
ROIs using the FDR method.

We examined the correlation between hippocampal
ISFC andmotif reinstatement in a similarmanner. Themo-
tif effect was defined and computed using the RSAmethod
described above (based on 5 TRs after motif onsets, using
similarity between different motifs from the same story-
lines as a baseline). Across motifs in Part C, the correlation
between the motif effect and ISFC after motif onset was
then computed for each participant. We also examined
the correlation across participants for each motif and
the influence of ISFC time windows and hippocampus
seeds.

RESULTS

fMRI data were collected from 25 participants while they
listened to a structured narrative that lasted for approxi-
mately 1 hr. The narrative has two interleaved, seemingly
unrelated storylines, A and B, that converge in the later C
part. In the first set of analyses, we tested how ongoing
information from each of the two unrelated storylines
was accumulated across minute-long segments while
being segregated from the parallel unrelated interleaved
storyline. In the second set of analyses, we tested how
events in Parts A and B were reactivated in Part C. The
two storylines are connected to Part C using 28 specifically
designed, recurrent narrative motifs. These motifs were
planted at specific, strategic moments of the narrative by
the author (58 occurrences in Parts A and B, 36 occur-
rences in Part C). Participants’ understanding of the rela-
tions created by these motifs was assessed based on
postscan questionnaires.
For the fMRI data, we first regressed out the effect of au-

dio amplitude and between-segment pause (Appendix A)
and applied the SRM to adjust for the mismatch of func-
tional topographies across participants (Chen et al.,
2015; please see Appendix B for results without applying
SRM). Using RSA (Kriegeskorte et al., 2008) on brain acti-
vation patterns within ROIs independently defined by a
whole-brain parcellation of resting-state fMRI (Shen
et al., 2013), we tested whether the structure of the story
induced the reinstatement of storylines and narrative
motifs and whether this led to the integration of separate
events.

Neural Reinstatement of Storyline

We first examined whether, and if so, where in the brain
the two seemingly unrelated storylines (A and B) had dis-
tinct cortical representations. Using RSA, we compared
the neural patterns within each storyline (AA and BB) to
the neural patterns between the two storylines (AB).
Within each ROI, we averaged over time within each seg-
ment (lasting approximately 1 min) to extract a spatial pat-
tern of activity for that segment. We then compared
pattern similarity between segments from the same story-
line to pattern similarity between segments from different
storylines (Figure 2A).
Higher within-storyline pattern similarity was revealed in

a large set of regions, including language areas (superior/
middle temporal gyrus, inferior frontal gyrus, and supple-
mentary motor cortex), areas in the DMN (including poste-
rior cingulate cortex [PCC], precuneus, medial prefrontal
cortex, superior frontal gyrus, posterior parietal cortex,
angular gyrus [AG], posterior hippocampus, and parahip-
pocampal cortex), areas in the executive network, (including
anterior insula, middle temporal gyrus, middle cingulate
gyrus, and supramarginal gyrus [SMG]), high-order visual
areas (including cuneus and fusiform gyrus), and subcor-
tical areas (including putamen, thalamus, and caudate).
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Figure 2B shows the time course of storyline effect at the
segment boundary in the regionwhere the largest separation
across the two storylines was found, that is, PCC/precuneus.
We computed the pattern similarity between each of the
−40 to 40 TRs around segment boundaries and the typical
A or B storyline patterns. At the boundary between B and
A segments, the similarity to the typical B pattern rapidly
dropped, whereas the similarity to the typical A pattern
increased. The twowaveforms crossed around theboundary.
Similar results were obtained for the complementary
transition from A to B segments.

It is worth noticing that, although the two curves in
Figure 2B seem to be symmetrical with respect to zero,
that does not mean that the two storylines had opposing
activation patterns. The two patterns are forced to aver-
age to approximately zero by the need to subtract the
global mean response before computing the typical A/B
patterns (Garrido, Vaziri-Pashkam, Nakayama, & Wilmer,
2013; Murphy, Birn, Handwerker, Jones, & Bandettini,
2009). Therefore, the correlation values only reflect the
relative, but not the absolute, difference between
storylines.

Figure 2. Storyline effect. (A)
Regions showing larger pattern
similarities between segments
of the same versus different
storylines (n = 25, p < .05,
FWE). (B) Pattern similarity
between typical A or B storyline
patterns and −40 to 40 TRs
surrounding the segment
boundaries in the right PCC.
Shaded areas indicate 95% CI
across participants. The vertical
gray-shaded area shows the
silent pause at boundary. (C)
Correlation between TRW index
and storyline effect across
regions.
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Stronger Neural Reinstatement of Storyline in
Areas with Longer Processing Timescales

We used an independent data set (Lerner et al., 2011) to
generate a TRW index for each ROI, that is, the difference
in interparticipant correlation between an intact story and
its scrambled version. Higher TRW indices were found in
prior studies to be associated with increased capacity to
accumulate information over long timescales (Yeshurun,
Nguyen, et al., 2017; Lerner et al., 2011). If the storyline
effect only reflected a difference in low-level properties
such as wording or acoustic features (note that the same
narrator read all segments), regions with low TRW, that is,
regions insensitive to word scrambling, should also show
a storyline effect as strong as that in high-TRW regions. On
the contrary, we found a significant positive correlation
between TRW index and storyline effect (Figure 2C). In

other words, areas that are capable of accumulating infor-
mation over long timescales had a larger difference be-
tween storylines.

Storyline × Time Effect

We predicted that the segregation of the two storylines (A
and B) should increase as the story unfolds and participants
accumulate further information about the unique context
of each storyline. To test this hypothesis, we examined
whether the storyline effect increased over time by dividing
Part AB into the early and later halves (Figure 3A). Within
areas showing the separation between storylines, an
increase in the separation of patterns at the later phase
(leading to a significant interaction between time and story-
line) was found in PCC/precuneus, left AG/inferior parietal

Figure 3. Storyline × Time
effect within regions showing
a significant storyline effect.
(A) Regions showing a larger
storyline effect in the late than
early half of Part AB (n = 25,
p < .05, FWE). The blue outline
marks regions showing a
significant storyline effect.
(B) Pattern similarity between
typical A or B storyline patterns
and −40 to 40 TRs surrounding
segment boundaries in the right
PCC, computed for the early
and late segments separately.
Shaded areas indicate 95% CI
across participants. The vertical
gray-shaded area shows the
silent pause at boundary.
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lobule (IPL), left superior frontal gyrus, right inferior frontal
gyrus, right middle temporal gyrus/middle occipital gyrus,
and right superior parietal lobule. Figure 3B shows the
storyline transition at segment boundaries in the early
and late AB parts, respectively.
We compared the storyline effect in the early and late

time bins to avoid imposing assumptions on the time effect
(e.g., linearity). Having said this, a graded Time × Storyline
effect is observed in similar regions (Appendix C).
We also examined pattern similarity in anatomically

defined hippocampus ROIs and again observed the sepa-
ration between storylines (Figure 4). The three-way inter-
action between subregions (anterior/middle/posterior),
time (early/ late), and storyline (same/different) is signifi-
cant, F(2, 48) = 20.84, p< .001. Post hoc two-tailed paired
t tests showed a same>different storyline effect in the late
AB part in the anterior hippocampus, t(1, 24) = 2.07, p=
.048, Cohen’s d=0.41, 95% CI [0.0001, 0.041]; in the early
AB part in the middle hippocampus, t(1, 24) = 5.91,
p< .001, Cohen’s d = 1.18, 95% CI [0.03, 0.07]; and both
the early, t(1, 24) = 3.47, p = .002, Cohen’s d = 0.69,
95% CI [0.01, 0.05], and late, t(1, 24) = 5.25, p < .001,

Cohen’s d = 1.05, 95% CI [0.03, 0.07], AB parts in the
posterior hippocampus.

Neural Reinstatement of Narrative Motifs

Information in Part C sheds new light on both A and B
events, for example, Clara learned the chili recipe from
Steven; Margaret’s mustard-stained blouse now reminds
Steven of her death. We examined how past information
from Part AB was reinstated during Part C upon the recur-
rence of the narrativemotifs. For each occurrence ofmotifs
in the story, we averaged the 5 TRs after its onset. Then, we
correlated each reoccurrence of a narrative motif in Part C
with all its occurrences in Part A or B (Figure 5). The corre-
lation between matching motifs was computed, as well as
the correlation between nonmatching motifs from the
same storyline (shared storyline) and the correlation be-
tween nonmatching motifs from the competing storyline
(unrelated segments).

Compared to nonmatching motifs from the same story-
line, the reappearance of the narrative motifs in Part C rein-
stated specific neural patterns seen when the motifs were
encountered during the A/B segments in PCC/precuneus,
bilateral clusters in posterior temporal lobe/inferior parietal
lobes/higher visual areas, bilateral lateral frontal areas, and
dorsal medial prefrontal cortex (Figure 6).

Furthermore, TR-by-TR analysis around the onsets of
narrative motifs in Part C showed that the correlation
rapidly increased after motif onset and lasted for 4–7
TRs, approximately three to six sentences (Figure 6, top
and bottom). The reinstatement effect was specific to
matching motifs and was not seen between nonmatching
motifs, either within or across storylines.

To verify that the motif effect does not only reflect
shared characters, we compared entries with shared
versus different main characters in the Motif × Motif
Pattern similarity matrix and found no significant character
effect (Appendix D).

Narrative Motifs vs. High-Frequency Word Effects

Tomake sure that the reinstatement of patterns aftermotif
onsets reflects the retrieval of narrative information (as op-
posed to simple reactivation of word representations
shared between the A/B and C segments, e.g., the repre-
sentation of the word “chili”), we performed the same
analysis on a set of high-frequency words that occurred
in Part C and in either the A or B storyline (e.g., “watch”).
We analyzed 28 high-frequency words to match the num-
ber of narrative motifs. If the neural reinstatement effect
that we observed for motifs simply reflected the reactiva-
tion of word representations, the same effect should be
observed when we look at the repetition of high-frequency
words like “watch” that have no particular narrative signifi-
cance. In all ROIs showing a significant motif effect, besides
the dorsal PCC, the correlation between matching items

Figure 4. Storyline effect in the hippocampus. Error bars indicate 95%
CI across participants. The three-way interaction between subregions
(anterior [ant.]/middle [mid.]/posterior [pos.] hippocampus), time
(early/ late), and storyline (same/different) is significant ( p < .001). The
asterisks indicate significant post hoc two-tailed paired t test ( p < .05).
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was significantly higher for the narrative motifs compared
to the high-frequency words, for which the correlation
hovered around zero ( p < .05, FWE corrected; Figure 7).
This indicates that word repetition alone was not sufficient
to drive the motif reinstatement effect we observed; rather,
the words had to refer to significant narrative events (as is
true for “chili” but not for “watch”).

Correlation between Motif Reinstatement and the
Behavioral Relation Score

To test whether participants showing stronger neural rein-
statement also did a better job of integrating related
events, we evaluated how well participants understood
the relation between the AB and C events using 14 open
questions in the postscan questionnaire. The fMRI partic-
ipants’ answers were evaluated by five raters who were
blind to our hypothesis (three women, aged 26–31 years).
The raterswere asked to judgewhether the fMRI participants

responded by remembering only Part AB (score = 0), only
Part C (score= 0), or both (score= 1). Responses indicating
no memory or false memory were given a score of 0.
Below are two sample questions and real responses

from the fMRI participants (the complete tables of all the
answers and scores are available at arks.princeton.edu
/ark:/88435/dsp011n79h7374):

The following prompts are words, sentences, or
phrases that recurred in the story. Please explain their
significance to the story: Question: Homemade chili=?
Answer (average score 1): Clara makes homemade
chili in the beginning and we find out that Clara
learned the recipe from Steven, but Steven makes it
better. Answer (average score 0): Steven makes it.
Answer (average score 0): What Clara makes and
Gary forgets to eat.

Question: Mustard stained blouse =? Answer (average
score 1): Margaret stains her blouse withmustard when

Figure 5. Predicted motif
effect. Events from the
convergence part (Part C) were
bridged to specific events in
Part AB by motifs, for example,
chili, that appeared both in
Part C and in Part AB. For each
motif presented in Part C, we
identified time points in Part AB
where the same motif was
presented (indicated by red
lines or red-outlined triangles)
as well as time points where
other motifs were presented
(indicated by gray and black
triangles). Focusing only on
time points surrounding motif
presentation (indicated in the
figure by gathering all of the
triangles together), we searched
for regions where motif-evoked
neural patterns in Part C were
more similar to neural patterns
evoked by the same motif in
Part AB than neural patterns
evoked by different motifs in
Part AB.

1116 Journal of Cognitive Neuroscience Volume 33, Number 6

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/6/1106/1913707/jocn_a_01707.pdf by Princeton user on 27 O
ctober 2021

http://arks.princeton.edu/ark:/88435/dsp011n79h7374
http://arks.princeton.edu/ark:/88435/dsp011n79h7374


meeting with Alexander, also Steven can’t bear to wash
it after Margaret dies. Answer (average score 0):
Margaret’s blouse is stained when she meets with
Alexander for the first time. Answer (average score 0):
Clara eating hotdogs in NYC.

We correlated (across participants) the size of the neural
motif reinstatement effect for each participant with the par-
ticipant’s ability to relate Part AB of the story to Part C, as
revealed by their average relation score. This analysis was
run separately for each ROI that showed a significant motif
reinstatement effect. Within these ROIs, we found a signifi-
cant correlation between the neural reinstatement of motifs

and the individual relation scores in left IPL, left SMG, left
AG, and right middle frontal gyrus (MFG; one-tailed, FDR-
corrected q < .05; Figure 8). In other words, participants
who showed a stronger neural reinstatement of motifs were
also better at reporting the narrative-related connections
among separate events sharing the same motifs.

A possible alternative explanation of this result is that the
relation score is tapping memory strength (not relations
per se) and that the correlation between neural motif rein-
statement and relation score simply reflects a shared influ-
ence of memory strength on these variables (i.e., high
memory strength is associated with strong neural reinstate-
ment and a high relation score, leading to a correlation

Figure 6. Motif effect. (Center) Regions showing a significant motif effect ( p < .05, FWE). (Top, bottom) Pattern similarities between motifs in Part
AB and TRs around motif onsets in Part C. Shaded areas indicate 95% CI across participants. Asterisks mark time points showing larger similarity
between the same motifs than both control categories ( p < .05, FWE correction for time points). L = left; R = right.
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between these two measures). To address this potential
confound, we generated a separate “AB memory score”
based on 14 questions in the postscan questionnaire that
only required a good memory of Part AB to answer (e.g.,
What does Clara find out during the party?); the mean level
of accuracy for these AB memory score questions was 75%
(SD = 17%). We then computed the partial correlation be-
tween the relation score and the neural motif effect, con-
trolling for the AB memory score. The partial correlation
effect was significant in left AG (r = .67, p < .001). Left
SMG (r = .49, p = .008), left IPL (r = .42, p = .020), and
right MFG (r = .42, p = .020) also showed partial correla-
tions that were (individually) significant, although they
were not significant after FDR correction for multiple
ROIs. The fact that the relation score and neural motif

effect were still correlated, even after controlling for the
AB memory score, indicates that this relationship cannot
merely be explained in terms of memory strength.

Between-Participant vs. Within-Participant RSA

We used between-participant RSA for the analyses de-
scribed above because our previous study (Chen et al.,
2017) found that neural patterns associated with the per-
ception and retrieval of specific events in a movie are
shared across participants (for similar findings, see
Baldassano et al., 2017, 2018; Zadbood et al., 2017)—to
the extent that these patterns are shared, this suggests that
averaging the neural patterns across participants will boost
the SNR. For a similar argument and a detailed analysis of

Figure 7. Motif versus high-frequency word effect. Among regions showing a significant motif effect (marked by the blue outline), the effect of
storyline-specific high-frequency words was computed using the same RSA method. The two effects were compared using a one-tailed one-sample
t test (n = 25, p < .05, FWE). Shaded areas show the distribution across participants.
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such effects, see Simony et al. (2016). For completeness, we
have also included within-participant versions of our analy-
ses. As we predicted (based on our prior work), the results
of these within-participant analyses are qualitatively similar
to the across-participant analyses but somewhat weaker,
presumably because of a lower SNR (Appendices F–J).

Hippocampal–Cortical ISFC and Cortical
Reinstatement of Storyline and Motif

To examine whether storyline reinstatement is dependent
on connectivity with the hippocampus, we examined the
correlation between storyline effect and hippocampal–
cortical ISFC (Simony et al., 2016) in ROIs showing a sig-
nificant storyline effect. For each A/B segment (except for
the first segment of each storyline), we correlated the

storyline effect with hippocampal–cortical ISFC during
that segment and ran the correlation across segments
(within participants) and participants (within segments).
Because we did not have strong predictions about the rel-
evant time windows for computing the storyline effect and
ISFC, we ran an exploratory grid search across a range of
analysis parameters. The ISFC between hippocampus and
mPFC showed a strong correlation with the storyline effect
(FDR-corrected q < .05 across ROIs) for multiple settings
of analysis parameters (Figure 9), although the result did
not survive multiple comparison correction when factoring
in the full set of analysis parameters, so it should be inter-
preted with caution. We also examined the correlation be-
tween hippocampal ISFC and motif reinstatement in ROIs
showing a significant motif effect but did not find a signifi-
cant correlation.

Figure 8. Correlation between the neural reinstatement of motifs and the individual relation scores. Each dot represents one participant. Only ROIs
showing a significant motif effect were tested (marked by the blue outline). Asterisks indicate significant correlation (n = 25, one-tailed,
FDR-corrected q < .05).
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DISCUSSION

For this study, we actively designed a structured narrative
in collaboration with a professional author to test how re-
lated events are dynamically and flexibly integrated by the
brain while being protected and segregated from interven-
ing irrelevant events. Our results indicate that thememory
traces of recent events can be reactivated as a function of
current input. This is seen in Figure 2B, where the neural
patterns associated with the current storyline were reacti-
vated at segment boundaries, while the activation patterns
of the irrelevant storylines subsided. This effect was stron-
ger in areas with longer processing timescales, peaking in
the DMN (Figure 2A and C). The reinstatement of relevant
past events was also tested in Part C by using motifs to re-
activate and update particular moments from both story-
lines (Figure 6). As predicted, the presentation of specific

motifs in Part C triggered the reinstatement of associated
A/B events. Taken together, these results revealed a dy-
namic shift between currently active context and latent
inactive contexts, which helps to integrate information
over minute-long interruptions while protecting the accu-
mulated information from irrelevant input.
Each storyline/scene is a unique combination of multiple

narrative elements, such as characters, locations, goals, and
so forth. In a prior paper (Yeshurun, Nguyen, et al., 2017),
we showed that local differences in narrative elements (e.g.,
switching two to three words in a sentence with their anto-
nyms) are amplified in the DMN, which showed response
differences that are robust to spatial and temporal blurring.
Furthermore, our prior work has shown that at least 15 di-
mensions of information are encoded in DMN activation
patterns shared across participants (Chen et al., 2017).
Therefore, we speculate that the difference between the

Figure 9. Correlation between
hippocampal–cortical ISFC
and storyline reinstatement
within ROIs showing a
significant storyline effect.
(A) The correlation across
segments was computed for
each participant, excluding the
first segment of each storyline.
The resulting r values were
entered into a one-tailed t test
after Fisher’s z transformation
(FDR-corrected q < .05 across
ROIs). (B) Correlation across
participants was tested using
the same methods. (C) Regions
showing a significant correlation
in at least one of the analyses.
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neural representations of the two storylines was driven by
the unique combinations of narrative features and should
not be attributed to any single narrative dimension in
isolation.
Using an audiovisual movie with interleaved storylines,

a recent study (Milivojevic et al., 2016) reported the emer-
gence of storyline-specific patterns in the hippocampus.
However, as noted earlier, storyline information in that
study was confounded with sensory features. Milivojevic
et al. (2016) sought to control for these differences by re-
gressing out sensory features, but this strategy is not ideal:
When storyline and sensory information are strongly cor-
related, regressing out sensory information can attenuate
legitimate storyline effects. Our study avoided this con-
found by presenting both storylines auditorily by the same
speaker. We not only replicated the finding of neural
differentiation in the hippocampus (Figure 4) but also
revealed similar patterns of results in extended cortical
areas, including language areas, the DMN, the executive
network, high-order visual areas, and subcortical areas.
In another related study, Lahnakoski, Jääskeläinen, Sams,
and Nummenmaa (2017) interleaved two independent
movies and found that breaking the flow of a narrative
(by interleaving) disrupts the accumulation of information
relative to continuous viewing, similar to our previous stud-
ies (Chen et al., 2016; Honey, Thesen, et al., 2012; Lerner
et al., 2011). However, unlike our study and Milivojevic
et al.’s (2016) study, this study did not test for the coding
of storyline-specific information and its reactivation across
interruptions.
Our results also extend those of Milivojevic et al. (2016)

by showing a difference along the long axis of the hippo-
campus in how the storyline effect developed over time.
The anterior hippocampus only showed a significant story-
line effect late (but not early) in Part AB, whereas the pos-
terior hippocampus showed a significant storyline effect
both early and late in Part AB. These results fit with the idea
that the timescale of integration increases from posterior to
anterior along the long axis in the hippocampus (Brunec
et al., 2018; Duncan & Schlichting, 2018; Morton, Sherrill,
& Preston, 2017; Collin et al., 2015). Specifically, the idea
that the anterior hippocampus integrates slowly (i.e., over
a long timescale) can explain why the storyline effect builds
up relatively slowly in this region. Likewise, the idea that the
posterior hippocampus integrates quickly (i.e., over a short
timescale) can explain why the storyline effect appears early
in this region. The results from the middle hippocampus
ROI, showing a storyline effect early but not late in Part
AB, are more puzzling. Speculatively, the preferred integra-
tion timescale for this ROI might be broad enough to con-
nect a story segment to adjacent story segments (which are
from the other storyline), but not broad enough to connect
to more-temporally-distant segments from the same story-
line; more work needs to be done to test this idea.
As noted above, one of our key hypotheses is thatmemory

reactivation supports the integration of these reactivated
memories with new inputs (for related work, see Cohn-

Sheehy et al., 2020; Griffiths & Fuentemilla, 2020; Clewett,
DuBrow, & Davachi, 2019; Backus, Schoffelen, Szebényi,
Hanslmayr, & Doeller, 2016; Schlichting & Preston, 2015,
2016; Zeithamova, Dominick, & Preston, 2012; Zeithamova,
Schlichting, & Preston, 2012; Zeithamova & Preston, 2010;
Shohamy & Wagner, 2008). This integration hypothesis is
supported by several aspects of our results. First, we found
that participants showing stronger neural reinstatement of
motifs in left SMG,AG, IPL, and rightMFGalso showedhigher
relation scores (Figure 8). This finding supports the hypoth-
esis that reinstatement of motifs led to better integration of
Parts AB and C. In addition, the observed Storyline × Time
effect (Figure 3) is consistent with the hypothesis that new
segments updated the representations of the two storylines
and pushed them further apart. It is worth noting, however,
that the Storyline × Time effect (computed using between-
participant RSA) does not on its own provide definitive evi-
dence for the within-storyline integration. An alternative
explanation for this result is that, over time, individual story-
lines become represented in a more stable and stereotyped
fashion across listeners (thusmaking the two storylinesmore
discriminable across listeners), as opposed to the storylines
becoming more different within listeners. In principle, the
within-participant RSA results (shown in Appendix G) should
be able to resolve this point, as any difference in the storyline
effect over time in this analysis necessarily would reflect a
within-participant effect. However, in practice, the results of
this analysis are equivocal. The pattern of results across ROIs
is qualitatively similar (suggesting that the storyline represen-
tations truly are moving apart), but the results no longer pass
FDR correction; it is unclear whether this simply reflects the
lower SNR of within-participant (vs. between-participant)
analysis or the absence of a true “storyline differentiation”
effect.

Finally, having demonstrated the reinstatement of rele-
vant past information, we next addressed the contribution
of hippocampus-based episodic memory to this reinstate-
ment. Previous work by Chen et al. (2016) showed that
hippocampal–cortical interaction helped participants to in-
tegrate information across movie segments separated by a
1-day break. In our exploratory analyses, we found that
storyline reinstatement increased with functional connec-
tivity to hippocampus in mPFC both across participants
and across segments (Figure 9), for several (but not all) pa-
rameter settings for the analysis. This finding fits with the
idea that the hippocampus, which is known to be involved
with the reinstatement of episodic memories over days,
may also be involved with the reinstatement of recently ac-
cumulated memories over shorter lags (for additional evi-
dence in support of this view, see, e.g., Goodrich, Baer,
Quent, & Yonelinas, 2019; Hannula & Ranganath, 2009;
Staresina & Davachi, 2009; Ezzyat & Olson, 2008; Olson,
Moore, Stark, & Chatterjee, 2006). Notably, the degree of
interparticipant functional connectivity between hippocam-
pus and cortex did not reliably predict neural reinstatement
triggered by motifs in Part C. One possible explanation is
that the interparticipant functional connectivity method
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involves averaging overmultiple timepoints; thismaymake
it less useful for detecting brief reinstatement events trig-
gered by motifs.

In addition to hippocampus-mediated episodic memory,
there are other mechanisms that might contribute to
reinstating storyline representations. For example, recent
studies of working memory have shown that past informa-
tion could be held in the cortex during a delay period with-
out persistent activity (Wolff, Jochim, Akyürek, & Stokes,
2017; Sprague, Ester, & Serences, 2016; Stokes, 2015) and
such inactive neural patterns can be reactivated on task
demand (Watanabe & Funahashi, 2014), by probe stimuli
(Wolff et al., 2017), and by TMS (Rose et al., 2016); several
computational models have been built to account for the
latent memory (Buonomano & Maass, 2009), and short-
term synaptic plasticity in the cortex has been proposed
to be the underlying mechanism (Miller, Lundqvist, &
Bastos, 2018; Mongillo, Barak, & Tsodyks, 2008; Zucker
& Regehr, 2002). More research is needed to directly test
whether short-term plasticity within the cortex plays a role
in supporting the memory of recent context.

Our design successfully induced reactivation of neural
patterns associated with specific storylines and motifs,
which, we believe, reflects the reinstatement of narrative in-
formation relating to past events rather than simple reacti-
vation of word representations. In support of this view, we
found a significant motif effect even when taking storyline-
specific high-frequency words as the baseline (Figure 7),
showing that word repetition is not sufficient to drive the
effect. In addition, the samemotif was not always expressed
in the samewords (“throwing up” vs. “Clara feels sick, as the
coffeecake rises to her throat”), showing that word repeti-
tion is not necessary to drive the effect. Furthermore, as
noted above, we found a correlation between the behavioral
relation scores and the neural motif effects (Figure 8). In
other words, the same set of narrativemotifs yielded greater
neural reinstatement in participants who demonstrated a
better understanding of the narrative. As for the storyline
effect, the strongest difference between storylines was
found in regions with long TRWs, that is, regions where ran-
domly ordered words do not elicit reliable responses
(Lerner et al., 2011; Figure 2C). Furthermore, 27% of the
word tokens in the early AB part are storyline specific,
whereas only 24% of the word tokens in the late AB part
are storyline specific. Therefore, the difference in wording
cannot explain the finding of a stronger storyline effect in
the later AB part (Figure 3).

In conclusion, real-life events require dynamic integra-
tion of past and present information. Our results suggest
that process memory may have two states: a state in which
prior events are active and influence ongoing information
processing and an inactive state in which the latent mem-
ory does not interfere with the ongoing neural dynamics
(Hasson et al., 2015; Stokes, 2015). Through cross-
disciplinary collaboration, this study demonstrated a way
to achieve some experimental control over naturalistic
stimuli, which play an ever-increasing role in revealing

how the human brain works in its native environment
(Lee, Bellana, & Chen, 2020; Willems, Nastase, &
Milivojevic, 2020; Sonkusare, Breakspear, & Guo, 2019),
and also showed how skilled storytellers leverage these
mechanisms of separation and integration to bring about
the desired effects in the listener’s brain.

APPENDIX A

APPENDIX B

t Value maps showing the effects of audio amplitude and
between-segment pause (n = 25, p < .05, FWE corrected).

Storyline and motif effects without applying SRM ( p < .05, FWE).
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APPENDIX C

APPENDIX D

Graded Time × Storyline effect. The Time × Between-Storyline Dissimilarity and Time × Within-Storyline Similarity effects were tested separately,
within regions showing a significant storyline effect (marked by blue outline; n = 25, p < .05, FWE), and their overlap is shown on the bottom
(yellow regions).

(A) Predicted pattern similarity between motif-related events based on
whether they share the same character. (B) Character effect was not
significant ( p < .05, FWE).
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APPENDIX E APPENDIX F

APPENDIX G

Storyline Specific High-Frequency Words Used for the
Control Analysis (Figure 7)

Lemma Storyline Lemma Frequency Motif

face AC 16 0

glass BC 12 0

sit AC 11 0

pill BC 11 1

father AC 10 0

dad BC 9 0

our AC 9 0

apartment BC 8 0

violin BC 8 0

miss BC 8 0

watch BC 8 0

sound BC 8 0

wait BC 8 0

half AC 7 0

scotch AC 7 0

lock BC 7 0

empty BC 7 0

give BC 7 0

art AC 6 0

chili AC 6 1

dead AC 6 0

girl BC 6 0

help BC 6 0

plastic AC 6 0

please AC 6 0

purse BC 6 0

daughter BC 6 0

fast BC 6 0

Comparison between the within-participant RSA and between-participant
RSA of the storyline effect. For the thresholded result of
between-participant RSA, see Figure 2.

Comparison between the within-participant RSA and between-participant
RSA of the Storyline × Time effect. Only ROIs showing a significant
storyline effect were tested (marked by the blue outline). For the
thresholded result of between-participant RSA, please see Figure 3.
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APPENDIX H

APPENDIX I

APPENDIX J

Data Availability

The fMRI data and the auditory story used in this study have
been publicly released as part of the “Narratives” collec-
tion on OpenNeuro (openneuro.org/datasets/ds002245).
The data corresponding to this study are indicated using
the “21st year” task label. Raw MRI data are formatted
according to the Brain Imaging Data Structure with ex-
haustive metadata. These data can be cited using the
following reference: Nastase, S. A., Liu, Y.-F., Hillman, H.,
Zadbood, A., Hasenfratz, L., Keshavarzian, N., et al.
Narratives: fMRI data for evaluating models of naturalistic
language comprehension.

The transcription of the story (“The 21st year”), a com-
plete list of the motifs, and the relation scores are also avail-
able at arks.princeton.edu/ark:/88435/dsp011n79h7374.
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Diversity in Citation Practices

A retrospective analysis of the citations in every article
published in this journal from 2010 to 2020 has revealed
a persistent pattern of gender imbalance: Although the
proportions of authorship teams (categorized by estimated
gender identification of first author/last author) publishing
in the Journal of Cognitive Neuroscience ( JoCN) during
this period were M(an)/M = .408, W(oman)/M = .335,
M/W = .108, and W/W = .149, the comparable proportions
for the articles that these authorship teams cited were
M/M = .579, W/M = .243, M/W = .102, and W/W = .076
(Fulvio et al., JoCN, 33:1, pp. 3–7). Consequently, JoCN
encourages all authors to consider gender balance explic-
itly when selecting which articles to cite and gives them
the opportunity to report their article’s gender citation
balance. The authors of this article report its proportions
of citations by gender category to be: M/M = .545; W/M =
.218; M/W = .127; W/W = .109.
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