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Humans form lasting memories of stimuli that were only encountered once. This naturally

occurs when listening to a story, however it remains unclear how and when memories are

stored and retrieved during story-listening. Here, we first confirm in behavioral experiments

that participants can learn about the structure of a story after a single exposure and are able

to recall upcoming words when the story is presented again. We then track mnemonic

information in high frequency activity (70–200 Hz) as patients undergoing electrocortico-

graphic recordings listen twice to the same story. We demonstrate predictive recall of

upcoming information through neural responses in auditory processing regions. This neural

measure correlates with behavioral measures of event segmentation and learning. Event

boundaries are linked to information flow from cortex to hippocampus. When listening for a

second time, information flow from hippocampus to cortex precedes moments of predictive

recall. These results provide insight on a fine-grained temporal scale into how episodic

memory encoding and retrieval work under naturalistic conditions.
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Humans can learn very quickly. When meaningful content
is presented in narrative form, we are able to absorb a
substantial amount of information in one shot, that is

without repetition or rehearsal1,2. Consequently, when we listen
to a story that we have heard before, we can often recall what is
about to happen from memory.

This kind of naturalistic learning has recently received more
attention in the investigation of our memory system1,3,4. Natur-
alistic stimuli engage the brain to a stronger extent than sparse
and artificial stimuli5 and allow us to study how memory is used
"in the wild", outside of situations where our memory is explicitly
being tested. Studying memory in naturalistic settings has also
exposed some fundamental theoretical questions that were pre-
viously ignored: When participants are given an artificial memory
test (e.g., a list of word pairs), it is easy to say when memories
should be stored and retrieved (they should be stored during the
“study phase” and retrieved during the “test phase”), but the real
world is not conveniently divided up into “study phases” and “test
phases”—there is just continuous experience, and the field of
memory research is just beginning to grapple with the question of
when encoding and retrieval take place in the wild. Recent work
in cognitive psychology and cognitive neuroscience has started to
shed light on these issues. Cognitive psychology has focused on
the role of pre-existing knowledge about how situations unfold,
so-called schemata6, in structuring our continuous experience
into discrete events (e.g., a dinner or a phone call). Theories of
event segmentation have productively explored how people
automatically and spontaneously segment experience into events:
The core postulate of these theories is that we use event models to
make predictions about the future (e.g., we anticipate the bill
when having dinner at a restaurant); when the current event
model ceases to generate accurate predictions, we swap out the
current event model for a new one and perceive an event
boundary. Importantly, these theories treat event boundaries as a
unified psychological construct7,8, where the defining feature is a
discontinuity in which event representations are active, rather
than the presence of any specific high- or low-level perceptual
feature7–11. This unified view of event segmentation has been
instantiated in computational models that can explain a wide
range of findings12,13. The perceived boundaries between events
can be measured through self-report14; this approach to marking
event boundaries has previously been used to identify a large
number of robust behavioral and neural correlates of event
boundaries3,8,15–20.

In cognitive neuroscience, work has focused on how hippo-
campus and neocortex are engaged during processing of natur-
alistic stimuli. It has long been known that memory for unique
experiences (i.e., episodic memory)21, relies on the hippocampus
as a key structure22–24. The hippocampus is thought to be crucial
for forming and retrieving associations between memory content,
whereas the detailed representation of that content is ascribed to
the neocortex25. Indeed, the reinstatement of information-rich
memories is frequently linked to cortical signatures26–28; such
cortical reinstatement has also been demonstrated in the realm of
naturalistic paradigms: functional MRI studies have found that
event specific patterns from encoding become reactivated in
neocortex during retrieval of stimulus material1,3,29. Hippo-
campal involvement has also been demonstrated in naturalistic
paradigms: Interestingly, the hippocampus becomes more active
at the end of naturalistic events19 and this hippocampal activity is
predictive of subsequent memory performance3,20.

These findings suggest an interplay between hippocampus and
neocortex under naturalistic conditions that is shaped by the
structure of the narrative, and they engender questions about
when and how information is exchanged between the two struc-
tures. One would expect that information flows from neocortex to

hippocampus during learning, potentially timed to the end of
naturalistic events13,19. If the hippocampus then initiates the recall
of information in the neocortex, one would expect that informa-
tion flow from hippocampus to neocortex precedes the recall of
mnemonic information. Importantly, the fine-grained temporal
nature of these hippocampo–cortical interactions requires the use
of a method with high spatial and temporal resolution: These
questions can be optimally addressed via electrocorticography
(ECoG) that uses concurrent recordings from neocortical and
hippocampal sites, while patients are experiencing a naturalistic
narrative that contains several event boundaries.

Contrary to experimental intuition, listening to a naturalistic
story may provide an ideal handle on episodic memory by
leveraging one of its key features, namely prediction about the
future. Predictive processing frameworks30,31 suggest that a ubi-
quitous function of our brain is to predict the future in order to
reduce uncertainty in perception32–34. In the context of sub-
sequent exposures to the same sequence of stimuli, the hippo-
campus has been suggested to drive recall-based prediction of
upcoming information in early processing regions35. In line with
this, the hippocampus has further been implicated in the expec-
tation of upcoming stimuli36. An unconstrained listening-para-
digm, in which participants listen repeatedly to the same story,
can naturally induce such predictive recall for upcoming infor-
mation from episodic memory.

Importantly, according to Event Segmentation Theory7, pre-
dictability is not uniformly distributed across naturalistic
experience: Within an event, our schematic knowledge of how
that kind of event typically unfolds can help us to accurately
predict the future (e.g., we anticipate the bill when having dinner
at a restaurant). In the vicinity of event boundaries, on the other
hand, this predictive information is often less strong (e.g., after we
leave the restaurant, there are many possible destinations), lead-
ing to increased uncertainty about what will happen next. Fur-
thermore, recent experimental work37 and modeling work38

suggest that episodic recall is triggered “on demand” when there
is uncertainty about what will happen next, in order to resolve
that uncertainty. Putting these points together, we therefore
expect increased predictive recall in the vicinity of event
boundaries, where it can compensate for high uncertainty. As a
caveat, we do not wish to claim that predictive recall will only
occur near event boundaries (it may also occur at other uncertain
moments in the story) or that all event boundaries are accom-
panied by high levels of uncertainty; our prediction is just that
event boundaries in our study will generally be associated with
increased uncertainty and thus there will be (on average) an
uptick in predictive recall around these boundaries.

In ECoG, a well-described correlate of listening to auditory
stimuli—and specifically speech—is entrainment of the high-
gamma frequency band across auditory processing areas39–41.
Such high-frequency activity has been shown to reflect the mass
firing of neural populations at the recording site42,43. High-
gamma activity in response to auditory stimuli can also be
modulated by top-down information: Melodic expectations, for
instance, modify this high-gamma response44 and prior experi-
ence with a clean version of degraded speech can help to
understand the degraded version via rapid tuning of the high-
frequency response in the auditory cortex45. In other words, early
auditory responses can adapt based on contextual
information46,47. A hypothesis that follows from these observa-
tions is that rapid adjustments of neural responses should also
arise from episodic memory after a single exposure to a natur-
alistic story, thereby allowing for the tracking of cortical memory
content in the form of anticipation.

In this work we assess learning under naturalistic conditions in
patients undergoing electrocorticographic (ECoG) recording for
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clinical purposes and in healthy participants (who did not
undergo ECoG recording), as they listen to the short story "Pie
Man” by Jim O’Grady. To determine the event structure of the
story, we first collect human-annotated event boundaries in
healthy participants. Participants then repeat the task, which
allows for the assessment of learning based on consensus and
response time changes. In a separate set of behavioral experi-
ments, we directly test the learning of story content. To this end
we prompt groups of healthy participants about upcoming
words48 with and without prior exposure to the story. The
patients undergoing ECoG recording simply listen to the story;
after a break, they listened to the story again. We probe for neural
signals of predictive recall via Granger Causality analysis by
testing whether the amplitude of the high-frequency signal
(70–200 Hz) contains more information about upcoming neural
states on the second run of listening compared to the first. We
then trace the information flow between cortical electrodes that
express such predictive recall and hippocampal electrodes,
examining the temporal dynamics of hippocampo–cortical
interactions in the vicinity of event boundaries. To directly
investigate hippocampo–cortical interactions related to the recall
of information, we then scrutinize the model predictions from the
neural Granger Causality analysis. From this we derive a
moment-by-moment time-course of predictive recall (i.e.,
moments when predictive information became available from
memory), which we then test for its relationship to event
boundaries and to behavioral prediction learning. Finally, we
identify punctuate moments in this time-course of predictive
recall, where the neural signal strongly and correctly predicts
upcoming moments in the story (i.e., peaks).
Hippocampo–cortical interactions in the direct vicinity of these
peaks reveal the information flow between hippocampus and
cortex that subserves predictive recall.

Results
One-shot learning of human-annotated event boundaries in
the story. A crucial advantage of naturalistic paradigms is that
they allow for the assessment of continuous structure as it is
encountered in real life, enabling us to investigate the role of
event boundaries7 in learning. To this end, we collected human-
annotated event boundaries on Amazon Mechanical Turk49. We
also used these data to assess whether participants’ perception of
event boundaries changes after a single exposure to the story. A
total of 205 participants performed a boundary detection task:
They listened to the story with the instruction to press the space
bar whenever, in their opinion, one natural and meaningful unit
ended and another began. After that, they listened to the same
story and were asked to do the task a second time. Response data
were coded for every participant as a vector that recorded 0 or 1
at every millisecond in the story, indicating whether the space bar
was pressed within the surrounding second. The averaged time-
course can be interpreted as the degree of agreement on event
boundaries, specifically the proportion of participants that per-
ceived each moment in the story as an event boundary (Fig. 1a).
The amount of agreement in our study is in line with previous
reports on event boundaries50 (see also: Supplementary Fig. 9 for
a distribution of response times around event boundaries).

Increased consensus upon one-shot learning. We predicted that
participants would have a better understanding of the underlying
event structure of the story on the second run, and therefore
would agree more about event boundaries on the second com-
pared to first run, despite not knowing of others’ responses and
not receiving corrective feedback. We analyzed agreement for
each participant by computing the cosine similarity between each

participant’s response vector (coded as 0, 1) and the average
agreement vector between the remaining (n− 1) participants
(Fig. 1b). Cosine similarity to others on run 2 (mean= 0.318) was
significantly higher than on run 1 (mean= 0.291, p= 0.008 as per
1000 random assignments of run-labels, Supplementary Fig. 1c,
right), with 61.46% (126/205) of participants increasing in cosine
similarity (p < 0.001, note: increased agreement can also be
assessed in the distribution of agreement. This is visible in a
quantile–quantile plot and can be assessed via kurtosis, see text in
Supplementary Information and Supplementary Fig. 1a-b, see
also Supplementary Information for additional discussion of
consensus as a measure for learning).

Earlier boundary detection upon one-shot learning. We further
predicted that participants would anticipate upcoming event
boundaries on the second run and therefore be slightly faster in
their responses (compare Fig. 1c). We tested this hypothesis via
cross-correlation between the time-course of agreement from the
second and from the first run. The maximal cross-correlation
(r= 0.874) was observed at a negative lag of −182 ms (Fig. 1d),
indicating that participants became significantly faster in detect-
ing event boundaries (confirmed by 1000 cross-correlations
between average time-courses from randomly permuted run-
labels, p < 0.001, yielding no lag that was more extreme; see also
Supplementary Information for additional analyses that confirm
earlier boundary detection).

One-shot learning of story content. Next we wanted to directly
confirm that one-shot learning behaviorally enables the predictive
recall of story content. To this end, behavioral data from 100
previously collected participants that performed prediction
experiments were available in aggregated form; we collected an
additional 100 participants on Amazon’s Mechanical Turk49, to
replicate and extend the findings. In both experiments, partici-
pants predicted upcoming words in the story from a context of 10
previous words that were presented in written form on their
screen (beginning at word 11 in experiment 1 and at word 3 in
the replication, with less context for the first 8 predictions). Only
half of participants (N= 50 per experiment) listened to the story
before performing the task; the other half had not listened to the
story and therefore could not use episodic memory to recall what
comes next. After naming the next word, the correct next word
was revealed and participants guessed (in the naive condition) or
recalled (in the predictive recall condition) the next upcoming
word. Sliding this contextual window along the story generates a
prediction-probability score for each word in the story, in each
condition. Prediction probability of the words was higher in the
group that had listened to the story in the prediction experiment
(t(934)= 23.043, p < 0.001, d= 0.754, degrees of freedom reflect
the number of words− 1) and in its replication (t (962)= 44.188,
p < 0.001, d= 1.424, Fig. 1e), confirming one-shot learning of
content (note that a slightly different word count in the replica-
tion is due to a different use of hyphenation, e.g., working-class).
In the replication, where data were available on the participant
level, we could also compare participants’ prediction performance
between groups. Participants that had heard the story before
predicted more words correctly (mean= 390.24, std= 180.151)
than naive participants (mean= 214.6, std= 82.225, t
(98)= 6.272, p < 0.001, d= 1.267, degrees of freedom reflect the
number of participants− 2), confirming again the rapid learning
of story content.

Neural evidence for predictive recall. The behavioral observa-
tions of predictive recall on the second run of listening suggest
that it should be possible to observe the emergence of predictive
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information in neural signals during the second presentation of
the story. We therefore probed for predictive recall in patients
undergoing electrocorticographic (ECoG) recording. Importantly,
the patients had no further instruction other than listening to the
story—they did not press buttons to indicate event boundaries;
when applicable, event boundary information was taken from the
behavioral dataset that was collected online, in a separate group of
participants. By applying Granger Causality (GC) analysis51–53

between the first and the second run of listening, we assessed
whether there was more information about upcoming states in
the amplitude of the high-frequency signal (70–200 Hz) on the
second run of listening compared to the first run. GC tests if the
past of a signal Y (i.e., up to timepoint t, see Methods) can
improve the prediction of signal X (at timepoint t), above and
beyond what the past of signal X can predict about its own future
states. The resulting F-value is formally understandable as a log-
likelihood (see Methods), it captures how much the prediction
between the two signals Y and X explains in the residual variance
of the auto-regressive model (here: amplitude of 70–200 Hz
activity in the auditory cortex)52. Typically GC is interpreted as a

measure of causal relation; certainly there is no causal influence
from the second run onto the first—the logic here is that, if
patients are using episodic memory to anticipate what will hap-
pen next in the story, information about the story should appear
in the neural signal earlier in run 2 than in run 1. Concretely, the
past signal of run 2 should predict the future signal of run 1,
above and beyond what the past signal of run 1 can predict about
its own future states—exactly the circumstance that GC is meant
to capture.

Crucially, the above hypothesis can be tested by assessing the
asymmetry of GC across runs: In the full model, the past of run
2 should predict the future of run 1, more so than the past of run
1 predicts the future of run 2 (Fig. 2a). We further included the
envelope of the auditory signal in the full model, which controlled
for entrainment from low-level stimulus-features and allowed us
to test for learning of these features (see below).

We contrasted how much the second run could improve the
prediction of the first run with how much the first run could
improve the prediction of the second, by taking the difference in
the respective F-values (Fig. 2b, c). This difference, averaged
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Fig. 1 One-shot learning of event boundaries and word predictions. a Agreement between raters on event boundaries. Blue and red lines depict the ratio
of raters that marked an event boundary within every second in the story on run 1 and run 2. Lines in fuchsia indicate boundaries based on run 2, as per
peak detection. b Similarity of each subject’s response vector to the agreement between all others. Purple dots indicate individuals: subjects above the
diagonal increase in similarity to others on the second run. The average increase (red cross) indicates consensus learning. Source data are provided as a
Source Data file. c Zoomed-in time interval of agreement between raters (compare panel a). Agreement on the second run (red line) slightly precedes
agreement on the first run (blue line). d Earlier boundary detection on run 2 is marked by a negative lag in the cross-correlogram (purple), peaking at
−182 ms (turquoise vertical line). e Performance difference between groups that have listened to the story and naive participants in prediction of upcoming
words in the story (the naive groups were predicting only based on general knowledge of language, lacking episodic information about the narrative).
Predictive recall of upcoming words manifests itself in a positive difference between the groups, i.e., prediction probability of the words increases after a
single exposure (turquoise prediction experiment, fuchsia replication; the prediction experiment was replicated once in a new sample), demonstrating one-
shot learning of story content. Notably, there is substantial variance across words, suggesting that some words are learned better than others.
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across all electrodes, was significantly smaller when the data were
randomly assigned to run 1 and run 2 for each electrode
(p= 0.001) and for each patient (p= 0.005, see Supplementary
Fig. 3a). Note that—while the numerical differences in F-values
can be small, because they capture relative contributions in
explaining the total variance of high-frequency activity in the
auditory cortex—the associated effect size (average difference
across patients’ electrodes divided by the standard deviation of
average differences) is d= 0.878, which denotes a large effect. No
significant effects were found in other frequency bands at the
sampling rate of 100 Hz (all ps > 0.135, however the alpha and low
gamma frequency band benefit from an analysis at a lower
sampling rate, see Supplementary Information) and we found no
significant evidence for learning of low-level stimulus-informa-
tion (comparing predictive information about the audio-envelope
between runs, p > 0.8, see also Supplementary Information for an
analysis of neural adaptation, showing that it is a distinct
phenomenon from predictive recall). To select electrodes on
which mnemonic information was present, we fitted a Gaussian
mixture model with 2 underlying distributions (one should fit
around zero, one not) to the differences in F-value across all
patients’ electrodes. Thirty-one electrodes, hereafter referred to as
’cortical predictive recall’ (CPR) channels, were selected for
further analyses (Fig. 2b), because the posterior probability of
their observed difference in F-value was 10 times higher for the
’effect distribution’ compared to the ’null distribution’ (Supple-
mentary Fig. 3b, we selected this threshold in analogy to a Bayes

factor of 10 that reflects the lower bound of strong evidence54;
however, even with a threshold of 100 we find nearly
indistinguishable results on 29 channels, with all of our findings
remaining significant). These electrodes were located in cortical
auditory processing regions (Supplementary Fig. 3c); we did not
observe predictive recall effects on hippocampal electrodes.
Interestingly, the optimal model order for measuring neural
predictive recall (taking into account neural activity between up
to 130 ms and 350 ms as per Akaike Information Criterion, see
Methods) was in the time-range of the behavioral advancement of
182 ms for boundary detection. This invites speculation about an
association between predictive information that is available in
auditory processing regions and behavioral benefits.

Hippocampo–cortical interactions near event boundaries. Prior
evidence implicates the hippocampus in the processing of events,
such that hippocampal activity is increased at the offset of events
and the amplitude of such offset responses is predictive of sub-
sequent recall performance3,55. Based on these results, we pre-
dicted information flow from CPR channels to the hippocampus
at the end of events. We tested this hypothesis in patients where
hippocampal channels were recorded and predictive recall was
observed (N= 6): For every hippocampal channel, multivariate
mutual information (MI) with CPR channels was assessed, which
measures statistical dependence between the channels and
quantifies shared information, i.e., each hippocampal channel was
analyzed relative to all CPR channels at once (treated as a
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Fig. 2 Identifying electrodes that show predictive recall. a Tracking of neural prediction via Granger Causality: Prediction between runs is added to each
auto-regressive model. If the neural signal acquires memory about upcoming states after listening to the story once, then data from run 2 should be able to
improve the prediction of the auto-regressive model for run 1 (red arrows). Signal from run 1, on the other hand, should not be able to improve the
prediction of the auto-regressive model for run 2 (blue arrows). The difference between those predictions across runs is interpreted as a measure of
predictive recall. b Difference in F-values between the prediction of run 1 from run 2 and the prediction of run 2 from run 1, indicating neural evidence for
predictive recall that emerges on the second run of listening. Part b shows electrodes selected for further analyses and part c shows all electrodes (the
bottom row images are slightly rotated outwards for enhanced visibility of three-dimensional electrode positions).
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multivariate pattern). Specifically, we concatenated the high-
frequency amplitude (70–200 Hz, Fig. 3a top) on the CPR
channels within 1 second around the 19 potential event bound-
aries (identified using the button responses in the behavioral
experiment’s run 2). For each hippocampal channel, we con-
catenated the amplitude across six frequency bands (delta < 4 Hz,

theta 4–8, alpha 8–15, beta 15–30, low gamma 35–55 and high
gamma 70–200) and the raw signal (Fig. 3a bottom), in order to
be sensitive to any shared information. To account for delay in
information flow between channels, we assessed MI repeatedly at
different lags (between a 1.5s lead and 1.5s lag), by shifting the
channels in steps of 10 ms. Furthermore, we conditioned MI on

Fig. 3 Connectivity analysis between ‘CPR channels’ and hippocampus/visual control. a Conditional Multivariate Mutual Information was computed
across 1s time-windows between the high-gamma amplitude from all available `CPR channels' (treated as a multivariate pattern, blue) and 6 frequency
bands and raw data (red) at each respective channel of interest. This was done at different channel-lags; the analysis at each lag was conditioned on the
zero-lag pattern (turquoise). This analysis, which yields an estimate of shared information at each lag, was repeated at different distances to event
boundaries (red lines), resulting in a two-dimensional map. b `CPR channels' (blue) and hippocampal electrodes (red). c Run 1 map of MI between
hippocampus and 'CPR channels' at different lags and distances to boundaries, averaged across all hippocampal channels. MI peaks at 730ms before event
boundaries (button press, y-axis); at the peak, information in hippocampus lags behind `CPR channels' by 270ms (x-axis). d Run 2 map displaying an
earlier peak at 1770ms before boundaries with a 300ms hippocampal lag. e Run 1 map of MI between electrodes in a visual control ROI and 'CPR channels'
at different lags and distances to boundaries, averaged across all visual channels. f Run 2 map of MI between electrodes in a visual control ROI and
'CPR channels' at different lags and distances to boundaries, averaged across all visual channels.
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the (typically spurious) shared information at zero-lag (signal not
shifted)56,57. Finally, because there is a perception-to-action delay
between the moments in which patients perceive an event
boundary and the moment in which they indicate it using the
button press, we repeated this whole analysis at all potential
moments around the marked time of event boundaries (−3s to
+1s). This analysis therefore resulted in a two-dimensional map
of shared information between hippocampus and the CPR
channels at each channel-lag (conditioned on the zero-lag) and at
varying distances from the event boundary.

At a distance of 730 ms before event boundaries (button
responses in the behavioral sample, note that patients were only
listening), we observed increased MI between hippocampus and
CPR channels at a hippocampal lag of 270 ms (peak in map),
when patients listened to the story for the first time (Fig. 3c),
indicating information flow from CPR channels to the hippo-
campus (compare Fig. 3b). To assess significance of this
information flow, we compared this connectivity profile to the
map of MI between the same CPR channels and a control region
of interest in visual cortex (network 1 from Yeo atlas58: 31
channels, see Supplementary Fig. 2b) where we did not expect
information flow (Fig. 3e). For multiple comparison correction
across multiple lags and timepoints, we used a cluster-based
permutation approach (cluster-forming threshold 95th percentile
in two-sample t-test between regions, see Methods). In this
analysis, we considered clusters of neighboring time/lag-points
within a plausible time period around the boundaries (2s prior to
500 ms post button response) and a plausible range of lags (1s
lead to 1s lag); note that a wider range was computed and plotted
for examination at the reader’s discretion. The summed
maximum cluster in the hippocampal analysis (peaking at
730 ms before the button response at 270 ms hippocampal lag)
was significantly greater (p= 0.044) than maximum cluster sums
under 1000 random swaps of channels between the regions on the
first run of listening.

Note that the significant cluster permutation confirms the
existence of an effect within the cluster. We report the peak
within each cluster as an unbiased estimate of where this effect is
strongest, i.e., reported peaks (at a certain lag and distance to
event boundary) are supported by the cluster-permutation
statistic.

We next investigated MI between hippocampus and CPR
channels when patients were listening to the story for the second
time. Again we found enhanced information flow from CPR
channels to hippocampus near event boundaries (peaking at
1770 ms before the button response at a hippocampal lag of
~300 ms, Fig. 3d). Statistical comparisons confirmed that the
maximum cluster was again larger for the hippocampal channels
than for the visual control ROI (p= 0.017, Fig. 3f). Interestingly,
on the second run of listening, there was more MI between
hippocampus and CPR channels, and information flow was
observed earlier than on the first run of listening (peaking at
1770 ms compared to 730 ms before the button response). A
comprehensive summary of these findings is that the ends of
events are important moments for memory encoding: when
patients anticipate an event boundary, enhanced information flow
from cortex is initiated earlier and more robustly.

Moment-by-moment tracking of predictive recall. The above
findings describe information flow from cortex (CPR channels) to
hippocampus in the vicinity of event boundaries. Event bound-
aries, however, represent moments of high uncertainty, where
information about upcoming states is sparse13. One would
therefore expect predictive recall to minimize this uncertainty via
information flow from hippocampus to cortex, when information

is available in episodic memory, i.e., because of the associated
higher uncertainty, we expect more predictive recall to take place
in the vicinity of event boundaries, and this predictive recall
should be accompanied by hippocampus-to-cortex information
flow. While we did not directly observe significant evidence for
such information flow from hippocampus to cortex during the
second exposure in the vicinity of event boundaries, the use of
human-annotated event boundaries may arguably not provide the
best handle to predictive recall itself: Even if predictive recall were
taking place around event boundaries, the boundaries are an
aggregate measure (derived from a separate group of participants)
and thus may not capture the potentially variable timing of
predictive recall in individual patients. We therefore directly
asked the question: which moments in the story contributed to
predictive recall in individual patients? To answer this question
we interrogated the model predictions between runs from the
Granger Causality analyses (compare Fig. 2) within each patient:
A predicted signal of run 1 was derived from run 2, using the
coefficients from the GC-model. These predictions were then
projected onto the actual data at run 1. As a contrast, run 2 was
predicted from run 1 and projected onto the data from run 2. The
difference between these projected model predictions represents a
moment-by-moment measure of predictive recall (concretely, the
degree to which states of neural activity are accurately forecast on
the second run of listening). Peaks in this time-course can be
interpreted as moments that become substantially more antici-
pated by patients on the second run of listening, in other words,
moments of strong and correct predictive recall. These points
correspond to meaningful moments in the story, for instance
profanity and humor (Fig. 4a).

Neural predictive recall relates to event boundaries. Behavioral
learning about event boundaries suggests that neural predictive
recall will encompass the structure of the story and allow, for
instance, the anticipation of boundaries. We tested this hypothesis
by analyzing the time-course of neural predictive recall directly
around 19 event boundaries (local peaks, extracted from the time-
course of agreement on the second behavioral run). We averaged
19 segments of neural prediction data around these boundaries
and compared it to averages derived from 1000 random selections
of those 19 boundaries (Fig. 4b). The increase in predictive recall
exceeded multiple comparison corrected chance level at several
timepoints between 2140 and 1020ms before event boundaries
(i.e., button responses, pFDR= 0.005, controlling the false-positive
rate at q= 0.05), with a peak at −1290ms (see Supplementary
Information for a fine-grained analysis via cross-correlation); note
that this negative lag is expected because a behavioral response can
only happen after an event has been neurally registered. These
data provide evidence that neural prediction learning encompasses
anticipation near event boundaries (i.e., right before button
responses were given in the behavioral sample).

Neural predictive recall tracks the average strength of beha-
vioral prediction learning. We further expected that the neural
time-course of predictive recall would reflect the average strength
of behavioral prediction learning for individual words. To assess
this, we correlated the strength of behavioral prediction learning
(i.e., the word-level change in prediction probability, Fig. 1e) with
the neural time-course of predictive recall (i.e., the mean pro-
jected model difference, Fig. 4a) at all those moments where a
word was presented (signal between word-onset and word-offset,
excluding silences). We accounted for the latency between word-
presentation and neural activity by repeating this analysis under
different shifts of the time-axis (from 2 seconds before to 2 sec-
onds after word-onset). This resulted in a correlation coefficient
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at different times around the word-onset. To assess significance,
we conducted the same analysis but assigned the difference in
prediction probability (i.e. behavioral predictive recall) randomly
to the words (1000 permutations). After correction for multiple
comparisons, the difference in prediction probability was sig-
nificantly correlated with the neural data at multiple lags in the
first experiment (pFDR= 0.015, controlling the false-positive rate
at (q= 0.05) with all significant p-values smaller than pFDR) with
a maximum correlation of r= 0.17 at 350 ms after word-onset. In
the replication (after exclusion of outliers: 9 naive, 7 learning,
whose correct responses—coded as 0 and 1—had a cosine simi-
larity < 0.6 to the average response accuracy across all other
participants), the maximum correlation between neural and
behavioral predictive recall (r= 0.113) was found at 590 ms after
word-onset (pFDR= 0.006, Fig. 4d, see Supplementary Informa-
tion for a more sensitive analysis yielding a peak at 320ms). These
peaks in cross-correlation are in the vicinity of the peak neural
high-frequency response (70–200 Hz) to word-onset (peaking at
320 ms, run 1 and at 389 ms, run 2, see Supplementary Infor-
mation), suggesting that neural learning entailed the anticipation
of individual words by forecasting the high-frequency response to
word-onset.

Hippocampo–cortical interactions near predictive recall events.
Having identified a moment-by-moment measure of predictive
recall, we next investigated the shared information between hip-
pocampus and cortex directly at punctuate moments of high
predictive recall in patient-specific time-courses: We first derived
an average time-course for every patient and then identified local
peaks, i.e., individual peaks were defined in a data-driven way (see
Methods) and need not correspond to the peaks highlighted in
Fig. 4a. On average we identified 22.17 peaks per subject
(min= 14, max= 26). Because the exact onset of these neural
predictive recall events could be accurately estimated from the
data (without relying on a separate set of annotators), we did not
need to repeat this analysis at different distances to the peak. This
analysis therefore results in a one-dimensional estimate of shared
information at different channel-lags (shifted again in steps of
10 ms). On the first run, we expected information flow from CPR
channels to hippocampal channels after predictive recall events
(i.e., reflecting the encoding of information). On the second run
(but not the first run), we hypothesized that information flow
from hippocampus to the CPR channels would precede peaks in
predictive recall. A chance distribution was obtained by phase
shuffling the neural predictive recall time-courses 1000 times

Fig. 4 Moment-by-moment tracking of predictive recall throughout the story and relation to behavior. a Difference in model predictions projected onto
the data at every moment in the story (Black, ±SEM across CPR channels dark gray). At peaks, the model from run 2 matches the data from run
1 substantially better than vice versa. Applying the coefficients to phase-shuffled data renders the neural prediction meaningless (light gray, error-bars are
5th and 95th percentile). Note that the peaks that are highlighted are for illustrative purposes. Analyses that draw conclusions from peaks use data-driven
peak definitions from individual patients. b Neural time-course of predictive recall (a) locked to event boundaries from run 2 (black line ± SEM across event
boundaries dark gray). The light gray lines depict the mean, 5th and 95th percentile of neural data averaged 1000 times across random boundaries.
The horizontal black line marks significance (as per fdr-correction of this permutation test across timepoints with pFDR= 0.005), the vertical line in fuchsia
marks the peak. c Correlation between the behavioral measures of increase in word-prediction performance through learning (compare Fig. 1e) and the
neural time-course of predictive recall (a) at different time-lags. Lines in turquoise and fuchsia show correlation with data from behavioral experiment 1 and
replication, respectively (the prediction experiment was replicated once, correlations with the neural data show similar results). Gray lines are 5th and 95th
percentile of correlations under random assignment of the change in prediction probability to individual words. Horizontal lines mark significance (as per
fdr-correction of this permutation test across timepoints with pFDR= 0.015), vertical lines mark peaks.
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before selecting peaks; p-values (−1500 ms lead to 1500 ms lag)
were corrected for multiple comparisons at different lags with a
false-discovery rate correction59 (note that this correction is
conservative for autocorrelated data60). Additionally, the MI
between CPR channels and the hippocampus was compared to
the MI between CPR channels and other channels (all channels
that were not CPR channels or hippocampal channels): We
predicted that hippocampus in particular would show the pattern
of enhanced information flow to the CPR channels in
cortex.

In line with our hypothesis, on the first run, no significant
information flow from hippocampus to cortex was observed
(Fig. 5a, left). Neither, however, did we find information flow
from cortex to hippocampus in run 1 at these moments in the
story that (during run 2) yielded high predictive recall. This
suggests that, under naturalistic conditions, information may not
always be encoded immediately after it is encountered. Rather,
the ends of events may be crucial time-windows for the encoding
of information in continuous narratives (compare Fig. 3). On the
second run, we did find information flow from hippocampus to
CPR channels at moments of predictive recall. At lags between
−750 and −710ms and between −710 and −690 ms (peak at
−740 ms, negative lags indicate hippocampus precedes cortex)
mutual information between hippocampus and CPR channels
was significantly higher than in phase-shuffled data (pFDR=
0.006) and significantly exceeded mutual information between
other channels and the CPR channels (pFDR= 0.005, Fig. 5,
middle). MI at these lags was also higher on run 2 compared to
run 1 (pFDR= 0.011, as per a dependent sample t-test between
runs) and the difference in the real data was significantly higher
than differences in phase-shuffled data (pFDR= 0.004, Fig. 5b).
We explored whether any other region (defined as a network in
the Yeo atlas58, compare: Supplementary Fig. 2b) expressed
enhanced information flow to the CPR channels; however, we
found no significant effect in any other network on the second
run of listening. This uniquely links the hippocampus to
predictive recall: when predictive recall takes place information
flows from hippocampus to cortex.

Interestingly, at moments of predictive recall we also found
significant evidence for information flow from ’CPR channels’ to
hippocampal channels on the second run of listening; this
occurred at two distinct time-windows: at lags between 80 and
90 ms, 150 and 250 ms (peak at 170 ms) and again between 580
and 680 ms (peak at 630 ms) information flow between CPR
channels and hippocampus significantly exceeded shuffled data
and the mutual information between other electrodes and CPR
channels (Fig. 5a, right). At lags of 80, 160–190, and 620–630 ms
this information flow was additionally higher on run 2 compared
to run 1 (pFDR= 0.011) and this difference was higher than
differences in phase-shuffled data (pFDR= 0.004, Fig. 5b, see
Supplementary Information for a feature-by-feature dissection of
these effects).

Taken together, these data shed light onto the fine-grained
mechanisms that subserve the predictive recall of a naturalistic
story. Information from the hippocampus is transferred to cortex
at moments of prediction, and information also flows from cortex
to hippocampus at those moments, possibly reflecting either
feedback signals about successful recall or the re-encoding of
information.

Discussion
These findings unveil the behavioral and neural dynamics at work
when we learn under naturalistic conditions. In line with previous
experiments, we found that participants perceive boundaries
between discrete events when they listen to a story, and we show
that these boundaries become anticipated after a single experi-
ence. Using connectivity analysis on neural data from patients
undergoing ECoG recording, we observed information flow from
auditory cortex to hippocampus at the end of events. This pro-
vides ECoG support for the idea, derived from fMRI work by
Baldassano et al.3 and Ben-Yakov and Dudai55, that the hippo-
campus encodes ’snapshots’ of cortical activity at event bound-
aries. When investigating predictive recall directly, we found
evidence in both behavioral and neural data that predictive
information emerges after one-shot learning of the story. We
quantified neural predictive recall via Granger Causality analysis,

Fig. 5 Connectivity analysis at moments of predictive recall. a Conditional Multivariate Mutual Information at different lead/lag to Cortical Predictive
Recall channels at peaks in predictive recall on run 1 (left, blue) and run 2 (right, red). MI is conditioned on zero-lag connectivity: a lead signifies
information flow from hippocampus to cortex; a lag signifies the reverse. On run 2 connectivity with hippocampus was significantly increased at prediction
events. This was the case at a hippocampal lead of approximately 700ms and at 2 different lags. Horizontal red lines depict points of conjunct significance
comparing hippocampus to other channels (2-tailed independent sample t-test, pFDR= 0.005) and also to a version of this analysis that uses peaks from
phase-shuffled neural data (gray, pFDR= 0.006). b Difference in MI between the runs (hippocampus: purple, other channels: pink, phase-shuffled; gray).
Horizontal purple lines (right) mark additional conjunct significance of higher connectivity on run 2 compared to run 1 (two-tailed dependent sample t-test
pFDR= 0.011), higher difference with real than with phase-shuffled data (pFDR= 0.004), and higher difference on hippocampal channels than on other
channels (two-tailed independent sample t-test pFDR= 0.008; all separately FDR-corrected per contrast).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25376-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5394 | https://doi.org/10.1038/s41467-021-25376-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


leveraging the fact that recall of upcoming information (during
run 2) makes it possible to use neural data from run 2 to predict
the future of run 1, but not vice versa. While there was no explicit
instruction for the intracranial patients to memorize the story,
neural predictive recall was still reflective of our behavioral
measures of learning. Its association with information flow from
the hippocampus to cortex (a hallmark of episodic memory) and
its correlation (across words) with behavioral prediction learning
therefore buttress the interpretation that neural predictive infor-
mation actualizes episodic memory processes. Our data therefore
constitute a unique demonstration of learning as it naturally
occurs without the motivated memorization that typically takes
place in memory experiments. Crucially, we identified specific
moments in the neural time-course of predictive recall in indi-
vidual patients when strong anticipatory information emerged
from memory. When we time-locked our analysis to these specific
moments, we were able to show that information flows from
hippocampus to auditory cortex when predictive recall takes
place, followed by information flow from cortex to hippocampus.
This observation is in line with existing evidence from more
traditional laboratory paradigms that demonstrate the involve-
ment of the hippocampus in episodic learning and prediction61

and the widely accepted idea that memory retrieval entails
information flow from hippocampus to cortex62. Importantly,
however, our work tracks the temporal profile of naturalistic
predictive recall with high temporal precision and unveils the
neural underpinnings of these processes with direct concurrent
time-resolved recordings from hippocampus and cortex. It
therefore enables direct observation of how these mechanisms act
in relation to the naturalistic structure that governs our everyday
experience.

Our neural analyses answer with high precision when pre-
dictive recall occurs, but they cannot, on their own, identify what
information was recalled. We can gain some insight into this by
relating the time series of predictive recall to other variables. For
instance, we found a systematic relationship between the strength
of neural predictive recall evoked by words and the average
increment (across participants) in predictability of these words;
this suggests that—in part—neural predictive recall entails
retrieval of information about upcoming words. While we also
found a reliable relationship between neural predictive recall and
event boundaries (indexed by button presses), there remains
some uncertainty about the content of that prediction because of
the temporal lag that afflicts the button response: Participants
only note an event boundary after they have perceived it. It
therefore remains unclear whether anticipated brain states reflect
the presence of an event boundary itself, or whether it is other
information that becomes anticipated and furthermore whether
that information crosses a perceived event boundary63. We do,
however, establish that between 2140 and 1020 ms before button
presses, predictive recall is significantly enhanced. This is in line
with our prediction that increased uncertainty in the vicinity of
event boundaries would lead to increased recruitment of episodic
memory processes38. The moment-by-moment tracking of
memory in ECoG patients demonstrates the rapid neural changes
that occur with one-shot learning: high-frequency activity in
auditory processing regions acquires predictive information about
upcoming states. Therein, we analyzed commonalities between
channels; however, future research with more extensive electrode
coverage may be able to find differences in predictive recall
between anatomical regions. Previous work has already shown
that high-frequency activity in the auditory cortex can tune to
auditory input, enhancing the intelligibility of distorted speech
through experience45. Furthermore, content-specific patterns of
activity in gamma power have been linked to the reinstatement of
information during successful spatial navigation64 and the

viewing of images65. Our study leverages this phenomenon and
demonstrates (on a moment-by-moment timescale) when infor-
mation in the auditory cortex naturally reappears in a way that is
predictive of upcoming states. Notably, we did not observe these
prediction effects on hippocampal electrodes themselves—i.e., the
hippocampus did not significantly predict its own future states.
However, we did implicate the hippocampus in evoking pre-
dictive information about cortical states. This is in line with the
idea that a hippocampal index reactivates information in cortical
areas66.

In keeping with prior fMRI work3,19,20, our data suggest that
the boundaries between events are important anchor-points for
one-shot learning. In our study, like those fMRI studies, patients
undergoing ECoG recording were simply perceiving and trying to
understand a narrative, without being told anything about event
boundaries; we extend the fMRI finding of enhanced hippo-
campal activity at event boundaries by showing enhanced infor-
mation flow from cortex to hippocampus, measured using mutual
information. Therein we treat event boundaries as a unified
psychological construct (however, see also: Zheng et al.67 for a
productive distinction between different subtypes of event
boundaries). Conceptually, event boundaries represent moments
of high uncertainty, where information about upcoming states is
sparse13. The end of an event may therefore be an ideal moment
to store a coherent picture before an imminent change in the
environment. In line with previous data from a non-naturalistic
word memorization task showing that high-frequency activity in
the neocortex couples to hippocampus during encoding68, we
observe such coupling during naturalistic learning in the vicinity
of event boundaries3,19,55. Additionally, when patients were lis-
tening to the story for the first time, we did not observe infor-
mation flow from cortex to hippocampus directly after moments
that subsequently expressed high predictive recall; instead, this
information flow was only observed near event boundaries, fur-
ther suggesting that event boundaries are crucial moments for
memory encoding.

Strongly encoding transitions between events may also enable
our memory system to bridge uncertainty63: The behavioral
consensus learning (i.e., the one-shot increase in agreement on
event boundaries) and the anticipation of event boundaries in the
story, as well as the correlation between neural prediction
learning and agreement on event boundaries, all support the
notion that event boundaries are important moments in the story.
A prior study using scalp-EEG recordings in a non-naturalistic
setting also found reactivation of patterns from the previous event
at boundaries in streams of static images69. A possible explana-
tion of these findings is that information from an event is rapidly
recapitulated at event boundaries when thorough encoding takes
place and a snapshot is stored in the hippocampus.

When patients listened to the naturalistic story for the second
time, we found information flow from hippocampus to cortex
right before moments of high predictive recall. These data are in
line with prior evidence suggesting that, during spatial navigation,
the maintenance of object information (here cuing for a goal
location) is coupled to hippocampus70. While we could link
predictive recall indirectly to event boundaries by showing a
systematic relationship between the two (compare: Fig. 4b), we
did not directly observe significantly enhanced information flow
from hippocampus to cortex near event boundaries (compare:
Fig. 3c-d). As noted earlier, this null result may simply reflect the
fact that human-annotated event boundaries are an aggregate
measure (derived using a separate group of participants), and
thus may not be sensitive to variance in the timing of individual
patients’ perception of boundaries. Furthermore, the annotations
reflect the time of participants’ behavioral response to the
boundary but not the moment that the boundary was neurally
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detected—taken together, these factors mean that the event
boundary annotations may not be temporally precise enough to
identify brief bouts of communication between hippocampus and
cortex. By contrast, our neural measure of predictive recall (based
on Granger Causality) can be computed based on each individual
patient and thus provides a more precise temporal ’handle’ to
moments where episodic memory enables prediction. This may
help to explain why we were able to identify hippocampo–cortical
communication when time-locking to these moments.

Nevertheless, these data engender questions about the invol-
vement of event boundaries in the retrieval process. A limitation
of our investigation of event boundaries in the prediction process
is that patients did not have to think far ahead in the story,
possibly limiting recall to immediate information. The role of
event boundaries in the recall of information is potentially better
addressed in a task that probes the active recall of continuous
information over longer periods of time71. Evidence from the
recall of continuous stimuli already suggests that event bound-
aries may structure retrieval, serving as stepping-stones through
longer memories72. It is therefore possible that information is
encoded near the boundaries to the next event and that these
anchor-points are used in the retrieval process to reconstruct the
unfolding of continuous experience.

Overall, these results provide a moment-by-moment window
into the emergence of memory after a single exposure to a story,
showing the intricate dialogues between hippocampus and neo-
cortex that allow us to use memory to anticipate how a story will
unfold, and how these dialogues are shaped by the structure of the
story. Our results demonstrate the importance of event bound-
aries in encoding new information from neocortex into hippo-
campus; our methods also allowed us to identify specific
moments of predictive recall in individual subjects, and we
showed that these moments are associated with information
transfer from hippocampus into cortex. Taken together, these
methods and findings provide insight into how episodic memory
encoding and retrieval work in naturalistic conditions at a fine
temporal scale.

Methods
Ethical approval. Ethical approval for the studies was granted by Princeton
University Institutional Review Board, the Institutional Review Board at the New
York University Langone Medical Center additionally approved the patient studies.

Stimulus material and experimental procedures
Stimulus material. The stimulus material consisted of a humorous story of 7 min
and 30 seconds duration (“Pieman” by Jim O’Grady), recorded at a live perfor-
mance (“The Moth” storytelling event, New York City). For the online prediction
experiments, the story was transcribed manually by two different transcribers for
experiment 1 and the replication; a difference in word count between the tran-
scripts is due to the use of hyphenated words (e.g., working-to-middle-class) in
experiment 1. Laughter, breathing, lip-smacking, applause, and silent periods were
also marked in order to improve the accuracy of subsequent alignment. To derive
accurate word-onset and offset times, the audio was downsampled to 11 kHz and
aligned to the transcription via Penn Phonetics Lab Forced Aligner73.

Online experiments. A total of 405 healthy volunteers participated in online
experiments on Amazon’s Mechanical Turk49. Participants provided informed
consent before participation in accordance with the Princeton University Institu-
tional Review Board. Two hundred five participants completed a task that required
the segmentation of the story into natural and meaningful units; 200 additional
participants completed a different task that required the prediction of words in the
story in two separate experiments (100 per experiment; the second experiment
replicated the first one), i.e., the total N of 405 stems from three experiments with
205, 100, and 100 participants. The segmentation experiment asked participants to
segment the story while they were listening to the audio recording. Stimulus
material was presented using Inquisit software (Millisecond Software, LLC,
www.millisecond.com). The verbatim instruction was: "press the space bar every
time when, in your judgment, one natural and meaningful unit ends, and another
begins”7. During the task, a black dot appeared on the screen whenever the space
bar was pressed. After completing this task, participants were informed that they

would now hear the same story a second time and were asked to segment the
story again.

The prediction experiment had been previously run as part of a separate study
and data were available in aggregated form; it probed how well participants could
predict each word in the story without having previously heard the story, and how
well participants could predict each word after listening to the story once48. A
second experiment replicated the first prediction experiment and collected
information about individual word predictions that was no longer available from
Experiment 1. In both prediction experiments, participants saw 10 words from the
transcribed story presented on their screen. They were asked to predict the next
word that followed; after typing their response on their keyboard, the correct next
word was shown and participants were asked again which word followed the
current set of 10 words (continuing for every word in the story). In experiment 1,
this task started at word 11, in the replication the task started at word 3, limiting
the initial context. Importantly, in each experiment, 50 participants completed the
prediction task without knowing the story, and a separate group of 50 participants
completed the same task after listening to the audio recording of the story once.
This resulted in a total of 50 participants per experiment that guessed the
upcoming word without memory for the story, and a total of 50 participants per
experiment that could recall the upcoming word from episodic memory.

Electrocorticography experiments. Nine patients (18–58 years old, mean= 28.78,
SD= 11.82, 4 female, 5 right handed, 1 unknown handedness) were recorded at the
Comprehensive Epilepsy Center of the New York University School of Medicine.
Patients had been diagnosed with medically refractory epilepsy and were under-
going intracranial recording for purely medical purposes. They provided informed
consent in oral and written form before participation, in accordance with the
Institutional Review Board at the New York University Langone Medical Center.
Patients were informed that participation was unrelated to their medical treatment
and that they could withdraw their consent at any point without affecting their
care. For patients, the experiment consisted of listening to the story twice. Seven
patients completed the first and second run of listening on the same day, with a
short break ranging from 1min to 1 h and 40 min. One patient completed the
second run 2 days later. Patient 8 was recorded on the day of implantation once
and completed 2 further runs on day 5 after implantation. Because of a different
trigger setup, run 1 and 2 could not be aligned for patient 8. Consequently, run 2
and 3 from day 5 were used in lieu of run 1 and run 2. Importantly, this patient did
not have any hippocampal recordings and was not included in the connectivity
analyses. Furthermore, none of our findings hinge on the inclusion of this patient.

Data exclusion. For the behavioral analyses, no data were excluded (N= 405) in the
analyses (with the exception of five additional subjects that were never analyzed
because they either did not give any response, or informed the experimenter that
they experienced problems with the online experiment). For the analyses that relate
behavioral variables to neural prediction learning, however, some behavioral sub-
jects were excluded in order to obtain a clean estimate of behavioral time-courses:
(1) In the replication of the behavioral prediction experiment, participants were
excluded if their vector of correct responses (coded as 0, 1) had a cosine similarity
≤0.6 with the average prediction probability across all other n− 1 participants.
This process was repeated until all participants were sufficiently similar, resulting
in an exclusion of 9/50 participants in the naive condition and 7/50 participants in
the condition where they had heard the story before. (2) For the analyses that relate
agreement on event boundaries to neural predictive recall (see Supplementary
Information), 13/205 behavioral subjects who provided event boundary ratings
were rejected as being outliers (based on a cosine similarity ≤0.15 to the average
response vector across all other subjects on either of the runs). Importantly,
keeping outliers neither qualitatively nor statistically changes any of our findings.

Behavioral data analysis
Behavioral analysis of word predictions. Prediction probability was derived in the
behavioral prediction experiment and in its replication as the proportion of par-
ticipants that predicted the upcoming word correctly. Individual word predictions
were considered as correct if the participant’s lower-case text input matched the
correct next word in the story. Typos and spelling mistakes were corrected before
prediction accuracy was computed.

Behavioral analysis of story segmentation. Data from the story segmentation task
were aggregated in response vectors at a resolution of 1000 Hz. The response
vectors were set to 1 if a given participant had pressed the space bar within
1 second surrounding the timepoint and were set to 0 otherwise. To derive the
time-courses of agreement, these response vectors were averaged across partici-
pants. In order to test whether the consensus between participants increased, a
measure of consensus was computed by assessing the cosine similarity between a
participant’s response vector and the average response vector across all other
participants. Therein, the average similarity to others` response, and the number of
participants that increased in similarity were assessed. In order to test whether
responses on the second run happened earlier than on the first run, the cross-
correlation between the average response vector from run 2 and from run 1 was
assessed and we noted the lag that maximized the correlation.
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Neural data processing
Neural data acquisition and electrode localization. Data were recorded from grid
arrays (8 × 8 contacts, 10 or 5 mm spacing), linear strips (1 × 8/12 contacts), or
depth electrodes (1 × 8/12 contacts) using a NicoletOne C64 clinical amplifier
(Natus Neurological, Middleton, WI) with an online reference to a two-contact
subdural strip near the craniotomy site. Data were filtered with an analog bandpass
filter (pass-band: 0.16–250 Hz) and digitized at a sampling frequency of 512 Hz.
Electrophysiological data were available and could be localized for a total of of 1032
channels (95–124 channels per patient, see Supplementary Fig. 2a). Forty four of
those channels were excluded from analysis due to poor signal quality (0–15
channels per patient, see Supplementary Table). Localization of electrodes was
done by co-registering presurgical and post-surgical T1-weighted MRIs of each
patient74. Finally, nonlinear transformations of MRIs onto the Montreal Neuro-
logical Institute (MNI) MNI-152 template were computed to derive electrode
locations in (MNI) space. Electrodes were labelled anatomically based on the 17-
network solution by Yeo and colleagues58: An anatomical label was derived for
each electrode based on the Euclidean distance to the nearest network in MNI-
space (see Supplementary Fig. 2b). For analyses of the hippocampal region of
interest, electrodes from 6 patients were identified via manual inspection in
MRIcroGL75. The electrodes were selected with a liberal criterion, namely if their
surrounding signal drop included at least part of the hippocampal structure;
thereby 26 depth electrodes and 4 strip electrodes that were lying on the medial
side of the temporal lobe were selected (2–8 electrodes per patient, compare:
Fig. 3b, red electrodes and Supplementary Table 1).

Preprocessing of neural data. Electrophysiological data were analyzed in MATLAB
2019a (MathWorks) using the FieldTrip toolbox76. Data were cut from 5 seconds
before the beginning of the story to 5 seconds after its end. In a first step, channels
were rejected based on visual inspection (0–15 channels per patient) and moments
where artifacts were present, were marked manually. Subsequently, Independent
Component Analysis (ICA) was used to reject reference noise77. To this end, ICA
filters were computed on artifact free data. For ICA computation, data were
additionally filtered with a band-stop filter (stopband: 55–65, 115–125, 175–185).
The recording was then interpolated within 150 ms around moments where arti-
facts had been marked manually and the amplitude of a channel exceeded 3.5
interquartile ranges above its median. The computed ICA solution was then
applied to the interpolated data and between 1 and 3 of the spatially broadest
components were rejected manually. Finally, line noise was filtered out (stopband:
55–65, 115–125, 175–185). All filters were realized with a zero-phase lag 4th order
Butterworth IIR filter as implemented in the fieldtrip toolbox76, interpolation was
done via Monotone Piecewise Cubic Interpolation78.

Granger causality analysis. Pairwise-conditional time-domain Granger causality
(GC) analysis was realized with the Multivariate Granger Causality toolbox52,53.
GC was computed at each channel separately between run 1 of story listening and
run 2 of story listening, conditioned on the amplitude of the audio recording (note
that this is different from the traditional use of GC in neuroscience that assesses
connectivity between channels). To derive the neural signal, the data were bandpass
filtered in the frequency range of interest and the amplitude was computed as the
absolute value of the Hilbert transform. The audio recording was bandpass filtered
between 200 and 5000 Hz and its amplitude was likewise computed via the absolute
value of the Hilbert transform. Subsequently, all time-courses were downsampled
to 100 Hz. The neural data were truncated to the duration of the auditory recording
and the linear trend was removed. Finally, in order to reduce the influence of
outliers, those moments where the neural data exceeded 5 interquartile ranges
above the median were interpolated with a padding of 5 sampling points around
the peak; note that this is mostly relevant for the high-frequency band (70–200 Hz)
where residual epileptic spikes and electrical artifacts can produce extreme values.
In a first step, the appropriate model order for GC-analysis was selected via Akaike
Information Criterion using the LWR algorithm for faster computation. The full
vector auto-regressive (VAR) model was then estimated via ordinary least squares
regression using the selected model order. By comparing the full VAR model to
reduced VAR models that omit one of the predictors, this analysis yields an F-value
for each directed comparison from the log-likelihood ratio:

bFY!XjZ � ln
Σ̂
0
xx

�
�
�

�
�
�

Σ̂xx

�
�

�
�

ð1Þ

that can be read as “the degree to which the past of Y helps predict X, over and
above the degree to which X is already predicted by its own past and the past of
Z”52 ( Σ̂xx

�
�

�
� and jΣ̂0

xxj are determinants of the sample estimators of the residual
covariance matrices for the full and the reduced model, respectively; for the uni-
variate case these reduce to the variance). In other words: F denotes how much Y
can add to the prediction of X. Importantly these values can be meaningfully
compared52 and we here compare how much run 2 can add to the prediction of
run 1, with how much run 1 can add to the prediction of run 2. This is interpreted
as a measure of predictive recall (Fig. 2a).

Predictive recall channel selection. In order to separate channels that expressed
neural learning of prediction from electrodes that did not express learning, a

Gaussian Mixture Model with two components was fit onto the distribution of
difference in F across channels. The underlying reasoning was that channels where
learning was taking place should come from a distribution with a higher mean than
channels where no learning was taking place (which should center around a zero
mean). Thirty-one channels were selected because the posterior probability of their
observed difference in F-value was 10 times higher for the ’effect distribution’
compared to the ’null distribution’ (Supplementary Fig. 3b). Using the Yeo 17-
network solution58, 15 of those electrodes were ascribed to network 4, 4 electrodes
to network 14, 3 electrodes were ascribed to network 17, 2 to network 12, and 1
electrode to each of the networks 3, 6, 7, 8, 9, 13, and 16 (Supplementary Fig. 3c).
Because the electrodes on which we observed predictive recall effects were located
in cortical areas, we refer to them as cortical predictive recall (CPR) channels.

Connectivity analysis via Mutual Information. Connectivity analysis was performed
via Gaussian Copula Mutual Information (GCMI). This method is rank-based,
robust, and makes no assumptions about the marginal distributions of each vari-
able, resulting in an estimate that is a lower bound of the true Mutual
Information79. These properties make it a preferred method to account for
potential outliers in the data due to residual epileptic spikes or inevitable artifacts
because of the continuous nature of this dataset. Specifically, conditional multi-
variate mutual information was used. In this, the mutual information between the
high-frequency amplitude (70–200 Hz) on all CPR channels, on the one hand, and
a given channel’s multivariate pattern (raw signal and amplitude in 6 frequency
bands: delta < 4 Hz, theta 4–8 Hz, alpha 8–15 Hz, beta 15–30 Hz, low gamma
35–55 Hz, and high gamma 70–200 Hz) on the other hand, was computed at
different lags: The multivariate channel pattern was shifted against the CPR
channels, from a 1.5 second lead to a 1.5 second lag. In order to take out spurious
(and implausible) effects at lag zero56,57, this lagged GCMI was conditioned on the
multivariate channel pattern at zero-lag. For the connectivity analysis near event
boundaries, data from one-second windows around each potential boundary were
considered and the whole procedure was repeated at different moments around the
behaviorally recorded event boundary starting 3 seconds before the boundary and
ending 1 second after the boundary. This shifting accounts for a potential mis-
match between the moment of perception of an event boundary and the moment of
button press (compare: Fig. 3a). Consequently this resulted in a two-dimensional
map that estimates shared information at different lags (first dimension) and at
different timepoints around the event boundary (second dimension) across all data
within 1 second around these moments. For the connectivity analysis near peaks in
predictive recall, data within one-second windows around these peaks were con-
sidered, resulting in a one-dimensional estimate of shared information at
different lags.

Time-course of neural predictive recall. In order to derive a moment-by-moment
time-course of predictive recall, we asked the question: Where does the model from
run 2 predict run 1 better than the model from run 1 predicts run 2? In a first step,
we derived the model prediction between runs (run 2 predicting run 1 and run 1
predicting run 2) on CPR channels (see channel selection above). To this end, only
the coefficients that describe the contribution of run 2 to the prediction of run 1
were multiplied with the data from run 2 and vice versa, i.e., if

X̂t ¼ ∑
p

k¼1
Axx;k � Xt�k þ ∑

p

k¼1
Axy;k � Y t�k þ ∑

p

k¼1
Axz;k � Zt�k ð2Þ

describes the full model predicting run 1 (X) at timepoint t (where Y are the data
from run 2, Z is the audio recording and p is the model order) a partial model-
prediction from run 2 to run 1 was derived via

X̂
0
t ¼ ∑

p

k¼1
Axy;k � Y t�k ð3Þ

In order to assess when the model predicted the data accurately, the model-
prediction was projected onto the data by taking the dot product between model-
prediction and data across channels and then dividing by the number of channels.
Specifically, we multiplied the model prediction X̂t with the actual data Xt at every
channel and timepoint (yielding positive values if the model prediction and the
data were pointing in the same direction) and averaged across channels. The
difference between the projected model that predicts run 1 from run 2 and the
reverse model that predicts run 2 from run 1 was then smoothed with a moving
average filter of 1 second width and was taken as a time-course of predictive recall
in further analyses (Fig. 4a). To assess whether it would be useful to separately
analyze the CPR channels based on anatomical region (i.e., which Yeo network
they belonged to), we also derived prediction accuracy separately for each channel
(difference in model-times-data per channel) and correlated this measure between
channels. Despite closer spatial proximity, pairwise correlations of time-courses at
each channel (before averaging) were not significantly higher within anatomical
networks than between networks (t(168)= 1.103, p= 0.272); we therefore decided
to use the average time-course across all CPR channels in further analyses, rather
than grouping these electrodes by network.

Definition of peaks in time-courses. For peak detection, time-courses were first
smoothed with a Gaussian window of 2 seconds width. Subsequently, the data were
thresholded at the 95th percentile and grouped in clusters of neighboring points.
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Each cluster’s maximum was taken as a local peak. To relate the neural prediction
time-course to event boundaries, peaks were taken from the second run of the story
segmentation experiment and the neural time-course of prediction was locked to
these peaks and averaged.

Correlation of behavioral predictive recall and neural predictive recall time-courses.
To derive a time-course of behavioral prediction for correlation, a vector of the
same length as the neural prediction time-course was created. This vector was
holding the change in prediction probability of each word, at moments when a
word was presented. The correlation between the neural predictive recall time-
course and the behavioral predictive recall time-course was then computed only
across moments where a word was presented (i.e., using a continuous probability
vector ignoring silences between words). The latter was done to avoid confounding
word-onset effects with differential effects between words (only the latter were of
interest). The time-axis was then shifted and the analysis was repeated to identify
the lag that yielded the peak correlation.

Statistical testing
Improvement in word-prediction. In the behavioral word-prediction experiment
and in its replication, the words’ probability of being predicted correctly was
compared between the respective two groups (i.e., the group that had heard the
story before, and the group that had not) with a dependent sample t-test, to test for
an improvement in predictability across words. To test for improvement in word-
prediction performance across participants in the replication experiment, the
probability of predicting the upcoming word correctly (ratio of correct predictions)
was contrasted with an independent sample t-test between the two groups.

Story segmentation learning. Agreement was computed for each participant and
each run by taking the cosine similarity of that participant’s response vector to the
average response vector for the other participants. We then computed the average
(across participants) of the difference in agreement across runs. This value was
compared to the distribution of average differences under 1000 random permu-
tations of run-labels (Supplementary Fig. 1d). A simple binomial test was also used
to assess the probability that agreement was improving across runs; this test
evaluated the proportion of participants who showed improvement, under the null-
hypothesis that the probability to improve was 0.5 for each participant. To assess
significance of the lag between run 1 and run 2, the cross-correlation analysis was
repeated 1000 times under random assignment of labels and the observed lag was
compared to the random distribution of lags.

Neural learning. The presence of neural learning was tested conservatively by
asking whether an overall effect was present in the data. To this end, the difference
in F-values was averaged across all electrodes. Subsequently, the data were per-
muted 1000 times by applying a random sign-flip to each electrode’s F-value
difference and then re-averaging across electrodes, resulting in a null distribution
of averages. To ensure that the effect was not driven by a few patients, in another
test, this permutation was done on a patient level (i.e., the same random sign-flip
was applied to all of the electrodes from a given patient). Note that with 9 patients
the maximal amount of distinct permutations is limited to 29= 512. In both tests,
the true average difference across all electrodes was compared to the distribution of
averages under random assignment of runs to determine significance. A p-value
was computed as the number of differences that were larger under random per-
mutation, divided by the number of permutations.

Phase shuffling to test cross-correlations. In order to statistically test the cross-
correlations between the time-course of neural learning, and the time-courses of
behavioral learning, the neural time-course was phase shuffled 1000 times80 and
the same cross-correlation was computed (note that phase shuffling preserves the
correlational structure of the data). A p-value was then computed for every shift of
the time-axis as the number of correlations with phase-shuffled data that exceeded
the true correlation at this lag, divided by the number of permutations. To correct
for multiple comparisons, and thereby determine significance, a false-discovery rate
correction was applied across the time window of interest59. Whenever false-
discovery rate correction was applied, the largest significant p-value is reported as
pFDR, hence all significant p-values are smaller than this threshold.

Mutual information near event boundaries. We computed mutual information
(MI) between CPR channels and hippocampal channels near event boundaries, and
compared this to MI between CPR channels and a visual region of interest (ROI),
within a plausible range of lags and timepoints around the event boundaries; this
was done separately for run 1 and run 2. This statistical analysis assessed whether a
cluster of high MI observed in the hippocampus was indeed larger than in the
control ROI, where no such cluster was hypothesized. In a first step the hippo-
campal channels were compared to the control channels with a two-tailed inde-
pendent sample t-test. Two-dimensional clusters were then formed by considering
neighboring time-lag-points where t-values exceeded a cluster-forming threshold
of a t-value that corresponds to an alpha threshold of 5% and the MI within these
clusters was summed. The maximum cluster sum was then compared to the
maximum cluster sums that were obtained after randomly swapping channels

between hippocampus and control ROI 1000 times. A p-value was derived as the
ratio of maximum clusters that exceeded the real maximum cluster under random
permutations.

Peak locked analyses. In analyses that test for elevated values near peaks, statistics
were assessed by repeating the same analysis 1000 times with randomly selected
peaks; this includes the analysis of neural prediction locked to event boundaries
and the analyses of mutual information locked to predictive recall peaks. In order
to account for the auto-correlational structure of the neural data, the random
neural prediction peaks were extracted from the phase-shuffled neural data. From
the randomly generated peaks, a distribution was generated at every timepoint
around these random peaks and a p-value was derived as the proportion of random
values that were higher than the observed value (i.e., based on the true peaks). In
the tests that compare hippocampal channels between run 1 and run 2, p-values
were derived from two-tailed dependent sample t-tests between the runs. Tests that
compare hippocampal channels to other channels were performed with two-tailed
independent sample t-tests between the channels. This pertains to testing the
absolute MI and to comparing the difference in MI between the runs between
hippocampal and other channels. The resulting p-values were corrected for mul-
tiple comparisons by controlling the false-discovery rate59; the largest significant p-
values are reported as pFDR.

Effect sizes. Cohen’s d effect sizes were computed for t-values from a dependent
sample t-test as d ¼ tffiffiffi

N
p and for independent sample t-tests as d ¼ 2tffiffiffiffiffiffi

ðdf Þ
p

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Behavioral data that underly the analyses in this manuscript and summary data from
patients are available on Zenodo (doi: 10.5281/zenodo.5071942). Patient data in
summarized form can reproduce the key figures and statistics in the manuscript. Because
of their confidential nature, other patient data cannot be released to the public, but can be
made available by the authors in deidentified form, upon reasonable request. An Excel
Sheet provides data for Fig. 1b, Supplementary Fig. 1c, Supplementary Fig. 3b, and
Supplementary Fig. 13. Other figures are included in, or can be reproduced from the
online data repository on Zenodo (https://doi.org/10.5281/zenodo.5071942). Source data
are provided with this paper.

Code availability
The code that underlies the analyses in the manuscript is available on zenodo (https://
doi.org/10.5281/zenodo.5071942).
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